Семнадцатая Всероссийская открытая конференция «Современные Проблемы Дистанционного Зондирования Земли из космоса» Москва | 11-15 ноября | 2019

Учет эффекта скорости и направления ветра при классификации морских поверхностных пленок с использованием соосно-поляризованных спутниковых данных радаров синтезированной апертуры

Ивонин Д.В., Кожелупова Н.Г. Халиков З.А.

Институт океанологии им. П.П. Ширшова РАН, Москва, Россия ivonin@ocean.ru

ПОЛЯРИМЕТРИЧЕСКИЙ МЕТОД: Метод использует соосно-поляризованные и σ^H и модель УЭПР (Kudryavtsev et al., 2003), чтобы определить компоненты σ^{V} бреговское резонансное рассеяние σ_B и нерезонансное σ_n при использовании известного из теории поляризационного коэффициента *P*₀*B*.

Модель УЭПР (Kudryavtsev et al., 2003)

 $\sigma^{V} = \sigma_{0B} \cdot \left(1 + a_{V} \varsigma_{i}^{2}\right) + q \cdot \sigma_{0n}$ $\sigma^{H} = P_{0B}\sigma_{0B}\cdot\left(1+a_{H}\varsigma_{i}^{2}\right)+q\cdot\sigma_{0n}$

известный из теории

Бреговское рассеяние

 $\sigma_{0B} = 16\pi k_r^4 \left| G_V(\theta, \varepsilon) \right|^2 F(k_b)$

Нерезонансное рассеяние от обрушений волн

<u>ЦЕЛЬ</u>: Повысить эффективность разделения различных типов сликов на поверхности моря по поляризационным данным PCA Radarsat-2 (Cи **TerraSAR-X** (Х-диапазон) при использовании диапазон) поляризационного параметра RND (Resonant to Non-resonant Damping ratio, Ivonin et al., 2016) в условиях варьируемых ветровых условиях

<u>ИСХОДНЫЕ ПОЛОЖЕНИЯ</u>: На основе поляризационного параметра **RND** (Ivonin et al., 2016) была предложена поляризационная диаграмма для разделения пленок минерального масла (сырая нефть и ее эмульсии) и пленок растительного масла по данным PCA Radarsat-2 (С-диапазон) и TerraSAR-X (Х-диапазон) (Рис. 1), на основании которой было предложено определение пленок минерального масла

<u>ДАННЫЕ</u>: Данные Radarsat-2 и TerraSAR-X были получены для экспериментов NOFO в Северном море с контролируемыми разливами сырой нефти и ее эмульсии (минеральные масла) и растительного масла.

Пример обработки снимка PCA TerraSAR-X от 08.06.2011, содержащего изображение слика нефтяной эмульсии

«вслепую» с надежностью определения, показанной на Рис. 2. Разброс точек на диаграмме частично определяется вариациями ветра в диапазоне 2-8 м/с.

Рис. 3. (a) Исходная поляризационная диаграмма RND vs. бреговское волновое число $k_B = 2k_r \sin(\theta)$; (б) исходное число идентифицированных сликов vs. надежность идентификации.

Таблица. Характеристики исходных данных PCA Radarsat-2 и TerraSAR-X

Сним	ок Дата	Время (UTC)	θ	Скорост ь ветра	Направлен ие ветра относитель но радара	Слики
RSa	08.06.2011	05:59	46.8°	6.3 м/с	225°	эмульсия, растительное масло
TSa	08.06.2011	06:23	28.2°	6.3 м/с	220°	эмульсия
RSb	08.06.2011	17:27	35.7°	4.5 м/с	15°	сырая нефть, эмульсия, растительное масло
RSc	15.06.2012	17:48	49.4°	8.0 м/с	325°	эмульсия
TSc	15.06.2012	17:28	41.5°	8.0 м/с	325°	эмульсия
RSd	15.06.2012	06:20	31.2°	4.3 м/с	89°	эмульсия, растительное масло

Рис. 1. Пример обработки снимка PCA TerraSAR-X от 08.06.2011, содержащего изображение слика нефтяной эмульсии. Номерами шагов показаны этапы поляризационной обработки (Ivonin et al., 2017).

ЗАВИСИМОСТИ С	<u>ОТ СКОРОСТИ И НАПРАВЛЕНИЯ ВЕТРА</u>	
10 0	60 60 60 60 60 60 60 60 60 60	
$ \begin{array}{c} $	30 20 20 10 20 10 -0 -0 -0 -0 -0.5 -0.5 Cos(ϕ_{wind}) (f) 15 10 10 -0 -0 -0.5 Cos(ϕ_{wind}) (f) 15 10 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	

Рис. 2. Зависимость от скорости ветра (а) спектральной плотности ряби $B(k_B) = k_B^{-4} \cdot F(k_B)$;

Рис. 4. Зависимость параметра RND (а) от скорости ветра; (б) от направления ветра.

Рис. 5. (а) Скорректированная поляризационная диаграмма RND vs. бреговское волновое число; (б) улучшенное число идентифицированных сликов vs. надежность

(б) количества обрушений q.

РЕЗУЛЬТАТЫ ЗАВИСИМОСТИ ОТ ВЕТРА:

(Radarsat-2) и Х-диапазона (TerraSAR-X), 1) Данные С-диапазона пересчитанные основе модели УЭПР (Kudryavtsev et al., 2003) в уровни спектральной плотности бреговской ряби и количества обрушений волн, показывают хорошую корреляцию со скоростью и направлением ветра

2) Однако спектральной плотности ряби подавление показывает значительный разброс (рис. 2в), что связано с различной толщиной пленок. Подавление количества обрушений волн имеет меньший разброс (рис. 3б).

идентификации.

ВЫВОДЫ:

1) Поляризационный параметр RND в первом приближении линейно зависит от скорости и направления ветра (рис. 4).

2) Скорректированная на СКОРОСТЬ И направления ветра поляризационная диаграмма существенно меньше зависит от бреговского волнового числа. Тренд уменьшился в 2 раза (рис. 5а).

3) Надежность идентификации типа слика повысилась на 10%.

Литература:

- 1. Kudryavtsev V. N., Hauser D., Caudal G., and B. Chapron, "A semiempirical model of the normalized radar cross-section of the sea surface: 1. Background model", Journal of Geophysical Research: Oceans, vol. 108, no. C3, FET-3, 2003.
- 2. Ivonin D. V. et al. Interpreting sea surface slicks on the basis of the normalized radar cross-section model using RADARSAT-2 copolarization dual-channel SAR images //Geophysical Research Letters. – 2016. – T. 43. – №. 6. – C. 2748-2757.

ФИНАНСИРОВАНИЕ. Работа выполнена при поддержке проекта РФФИ № 18-55-20010.

Семнадцатая Всероссийская открытая конференция «Современные Проблемы Дистанционного Зондирования Земли из космоса» | Москва | 11-15 ноября | 2019