АЛГОРИТМЫ ОБРАБОТКИ РАДИОСИГНАЛОВ С ЦЕЛЬЮ КОМПЕНСАЦИИ ИСКАЖЕНИЙ ПРИ РАСПРОСТРАНЕНИИ ПО ТРАНСИОНОСФЕРНЫМ ЛИНИЯМ

Батанов В.В., Назаров Л. Е.

Фрязинский филиал Института радиотехники и электроники им. В.А.Котельникова РАН

Введение

При распространении по трансионосферным линиям сигналы подвергаются искажениям за счет влияния земной ионосферы как дисперсионной среды [1-7]. Рассматривается модель искажений комплексной огибающей сигналов, обусловливающие возникновение интерференционных межсимвольных (МСИ) и межканальных (МКИ) помех в дополнение к тепловым помехам в виде аддитивного белого гауссовского шума (АБГШ). Помехи МСИ и МКИ снижают надежность передачи информации по данным линиям [8].

Актуальными являются проблемы оценивания деградации вероятностных характеристик при приеме сигналов относительно распространения в свободном пространстве и разработки и моделирования алгоритмов обработки сигналов при приеме, снижающих действие рассматриваемых интерференционных помех.

Постановка задачи

Методы анализа распространения сигналов по стационарным ионосферным линиям основаны на решении волнового уравнения с учетом магнитного поля Земли $\vec{H}(\vec{r})$ относительно электрического поля E(z, f) плоской волны с частотой f [9]

$$\Delta \vec{E}(\vec{r},f) - \operatorname{graddiv} \vec{E}(\vec{r},f) + \frac{(2\pi f)^2 \vec{E}(\vec{r},f)}{c^2} \left(\vec{\varepsilon}(\vec{r},f) - j\frac{2}{f}\vec{\sigma}(\vec{r},f)\right) = 0.$$
(1)

Здесь *c* - скорость света в свободном пространстве; $\vec{\varepsilon}(\vec{r}, f) = (\varepsilon_x(\vec{r}, f), \varepsilon_y(\vec{r}, f), \varepsilon_z(\vec{r}, f)), \quad \vec{\sigma}(\vec{r}, f) = (\sigma_x(\vec{r}, f), \sigma_y(\vec{r}, f), \sigma_z(\vec{r}, f))$ - соответственно тензоры диэлектрической проницаемости и проводимости, зависящие от $\vec{H}(\vec{r})$.

В изотропном случае без учета влияния магнитного поля Земли $\vec{H}(\vec{r})$ при нормальном падении плоской волны на среду с диэлектрической проницаемостью $\varepsilon(z, f)$ и $\sigma(\vec{r}, f) = 0$, распространяющейся по оси z, и при выполнении условия $\frac{d\varepsilon(z, f)}{dz}\lambda \ll 1$ (λ - длина волны) решение (1) задается приближением геометрической оптики [9]

$$E(z,f) = \operatorname{Re}\left(E(0,f)\exp\left(-\frac{j2\pi f}{c}\int_{0}^{z}n(x,f)dx\right)\right).$$
(2)

Здесь $n(x, f) = \sqrt{\varepsilon(x, f)}$ - коэффициент преломления среды.

Для цифровых сигналов s(t) задача усложняется - сигналы представляются в виде суммы монохроматических сигналов, каждый из которых приобретает фазовое $\Delta \varphi(z, f)$ и амплитудное смещения за счет дисперсионных и поглощающих свойств ионосферы, что определяет искажение сигналов [3,4,6,7]. Эти искажения обусловливают возникновение помех МСИ и МКИ.

Цель работы - привести описание и результаты моделирования алгоритма обработки сигналов на выходе трансионосферной линии, компенсирующего влияние помех МСИ и МКИ.

Модели распространения сигналов по трансионосферным линиям

Рассматриваемая модель ионосферы трансионосферных радиолиний соответствует сферически-симметричной среде с неоднородной диэлектрической проницаемостью $\varepsilon(z, f)$ [5,10]

$$\varepsilon(z,f) = 1 - f_p^2(z)/f^2.$$
(3)

Здесь $f_p(z) = \sqrt{80.8N_9(z)}$ - собственная частота ионосферы (кГц); $N_9(z)$ (эл/см³) - электронная плотность ионосферы на высоте z.

$$N_{\mathfrak{H}}(z) = \sqrt{\gamma \cdot \exp[-(\exp(b(z - z_{\mathrm{M}})) + bz)]}.$$
(4)

Здесь *у,b* - параметры; *z*_м - высота, на которой достигается максимальное значение электронной плотности *N*_м [7].

Искаженные сигналы $\hat{s}(t)$ на выходе линии представляются как результат линейной фильтрации передаваемых сигналов s(t) [9]

$$\hat{s}(t) = \int_{-\infty}^{\infty} \dot{S}(f) \dot{H}(z, f) \exp(j2\pi f) df .$$
(5)

Здесь $\dot{S}(f)$ - спектр сигнала s(t); $\dot{H}(f,z) = \exp(j2\pi f\tau(z,f))$ - коэффициент передачи ионосферной линии, как линейного фильтра; $\tau(z,f) = \exp\left(j2\pi f \int_{0}^{z} \frac{dx}{c_{\phi}(x,f)}\right)$ - время распространения сигнала с частотой f

вдоль лучевой линии AB (сплошная линия AB на рис.1, поясняющего схему трансионосферной линии); $c_{\phi}(x, f) = c/n(x, f)$ - фазовая скорость.

Рис.1. Распространение сигналов по спутниковой ионосферной линии.

Время распространения $\tau(z, f)$ задается соотношением [5]

$$\tau(z,f) = \int_{0}^{z} \frac{n(x,f)(R_3 + x)dx}{c_{\phi}\sqrt{n^2(x,f)(R_3 + x)^2 - (n(0,f)R_3\sin(\theta_A - \xi_A))^2}}.$$
 (6)

Здесь R_3 - радиус Земли; θ_A - видимый зенитный угол; ζ_A - рефракционная поправка к θ_A [5].

Значения поправки ξ_A для модели дневной и ночной ионосферы и $\theta_A < 80^0$, f > 1 ГГц не превышают $\xi_A < 10''$ [3]. Вследствие малых значений параметра ξ_A при оценивании $\tau(z, f)$ применяется выражение без учета ξ_A

$$\tau(z,f) = \frac{e^2}{2\pi c m_e f^2} \frac{0.01(R_3 + z_M)}{\sqrt{(R_3 + z_M)^2 - (R_3)^2 \sin^2 \theta_A}} \int_0^z N_3(x) dx.$$
(7)

Здесь *е*, *m*_{*e*} - заряд и масса электрона.

Из соотношения (7) следует, что для описания трансионосферной линии необходима оценка полного электронного содержания $\alpha_{\Pi \ni C} = \int_{0}^{z} N_{\Im}(x) dx$. Метод оценки параметра $\alpha_{\Pi \ni C}$ основан на вычислении разности времени задержек $\Delta \tau(f_1, f_2) = \tau(z, f_1) - \tau(z, f_2)$ распространения (методы фазовой или групповой задержек) для пилот-сигналов с центральными частотами f_1 и f_2 . При реализации этого подхода параметр $\hat{\alpha}_{\Pi \ni C}$ оценивается с использованием соотношения [5]

$$\hat{\alpha}_{\Pi \ni C} = \frac{\Delta \tau(f_1, f_2)}{\frac{e^2}{2\pi m_e f^2} \frac{(R_3 + z_M)}{\sqrt{(R_3 + z_M)^2 - (R_3 \sin \theta_A)^2}} \left(\frac{1}{f_1^2} - \frac{1}{f_2^2}\right)}.$$
(8)

Таким образом, обратный линейный фильтр трансионосферной линии, снижающий действие интерференционных помех МСИ и МКИ, задается его коэффициентом передачи $\dot{H}^{-1}(z, f) = \exp(-j\varphi(z, f))$, здесь фаза $\varphi(z, f)$ определяется на основе соотношения

$$\varphi(z,f) = \frac{e^2}{cm_e f} \frac{0.01(R_3 + z_{\rm M})}{\sqrt{(R_3 + z_{\rm M})^2 - (R_3)^2 \sin^2 \theta_A}} \hat{\alpha}_{\Pi \ni \rm C}.$$
 (9)

Результаты моделирования

Одной из основных характеристик систем передачи информации является вероятность правильного приема $P_{\text{пр}}$ при приеме сигналов [8]. Для АБГШ оптимальный прием, основан на вычислении взаимной корреляции входной реализации $r(t) = \hat{s}(t) + n(t)$ с передаваемым сигналом s(t).

Ниже рассматриваются сигналы s(t) на основе двухпозиционной фазовой манипуляции (сигналы ФМ2), используемые при синхронизации систем связи различного назначения, включая спутниковые системы связи, в системах радиолокации [1,8]. Сигналы s(t) представляют последовательность элементарных сигналов $s_i(t, \varphi_{il})$ длительностью T [8]

$$s(t) = \operatorname{Re}\left(\sum_{i=1}^{n} Au(t+iT) \exp(j(\varphi_{il}+2\pi f t))\right).$$
(10)

Здесь u(t+iT) = 1 при $iT \le t < i(t+iT)$, иначе u(t+iT) = 0; A, φ_{il} - амплитуда и фаза элементарных сигналов; l = 0,1; n - количество элементарных сигналов. Фазы манипуляции φ_{il} для текущего значения i задаются правилом $\varphi_{il} = \pi l$ и определяются значениями передаваемого бита.

Моделирование трансионосферных линий выполнено с целью оценивания деградации вероятности $P_{\text{пр}}$ при приеме сигналов $\hat{s}(t)$ относительно распространения в свободном пространстве и эффективности приведенного алгоритма обработки сигналов при приеме, снижающего действие помех МСИ и МКИ. Характеристики трансионосферной линии - модель (4) с параметрами дневной ионосферы, высота z = 400 км, центральная частота $f_0 = 1500$ МГц, видимый зенитный угол $\theta_A = 0...80^0$. Сигналы s(t) содержат n = 8 элементарных сигналов ФМ2 с длительностью T = 20 нсек (частотная полоса $\Delta F = 100$ МГц).

Пример сигнала s(t), а также сигнала $\hat{s}(t)$ на выходе трансионосферной линии ($\theta_A = 10^0$) показан на рис.2 - видно искажение огибающей, временное рассеяние элементарных сигналов, определяющее интерференционные помехи, и временная задержка $\hat{s}(t)$ относительно s(t). По оси абсцисс отложены номера отсчетов с частотой дискретизации 32 ГГц. Пилот-сигнал, используемый для оценки параметра $\hat{\alpha}_{\Pi \to C}$ и формирования обратного фильтра $\dot{H}^{-1}(z, f)$, представлял сумму двух радиоимпульсов с центральными частотами $f_1 = 1.50$ ГГц и $f_2 = 1.55$ ГГц.

На рис.3 приведены вероятности $P_{\rm пр}$ при приеме сигналов s(t) при наличии АБГШ, реализующем правило Неймана-Пирсона с вероятностью ложной тревоги $P_{\rm лтр} = 10^{-3}$. Кривая 1 соответствует теоретической кривой при приеме исходных сигналов s(t) при распространении в свободном пространстве [1,8]. Кривая 2 соответствует распространению по трансионосферной линии - энергетические потери за счет рассеяния и влияния интерференционных по отношению к распространению в свободном пространстве достигают 0.3 дБ.

При использовании алгоритма обработки искаженных сигналов $\hat{s}(t)$ с целью компенсации данных помех энергетические потери незначительны - в для анализируемых значений отношения сигнал/помеха этом случае $E_c / N_0 > 9.5$ дБ соответствующая вероятностная кривая практически совпадает с вероятностной кривой 1 для распространения сигналов в свободном пространстве. Эти результаты показывают эффективность приведенного алгоритма компенсации искажений широкополосных обусловленных трансионосферных линий сигналов, влиянием распространения.

Рис.2. Вид сигнала на основе элементарных ФМ2 сигналов длительностью *T* : а) исходный сигнал; б) сигнал на выходе трансионосферной линии.

Рис.3. Вероятности *Р*_{пр} при когерентном приеме сигналов при наличии АБГШ, реализующем правило Неймана-Пирсона: 1- распространение в свободном пространстве; 2 - распространение по трансионосферной линии.

Заключение

Приведены методы описания искажений цифровых сигналов при их распространении по трансионосферным спутниковым линиям передачи, основанные на методах линейной фильтрации. Искажения фазо-частотных характеристик цифровых сигналов обусловливают временное рассеяние и возникновение межсимвольных и межканальных помех, которые снижают надежность связи. Особенностью этих помех является то, что невозможна их компенсация повышения мощности передаваемых путем сигналов. Приведено описание алгоритма компенсации данных искажений на основе использования пилот-сигнала и формирования обратного линейного фильтра. полной Показана возможность практически компенсации искажений широкополосных сигналов и достижения вероятностных характеристик правильного приема, близких к характеристикам правильного приема сигналов при их распространении в свободном пространстве.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 20-07-00525).

8

ЛИТЕРАТУРА

1. Спилкер Дж. Цифровая спутниковая связь. Пер. с англ. М.: Связь. 1979, 592 с.

2. Спутниковая связь и вещание: справочник. Под ред. Кантора Л.Я. М.: Радио и связь. 1997, 528 с.

3. Колосов М. А., Арманд Н. А., Яковлев О. И. Распространение радиоволн при космической связи. М.: Связь, 1969, 156 с.

 Арманд Н. А. Распространение широкополосных сигналов в дисперсионных средах. // Радиотехника и электроника. 2003. Т.48. №9. С. 1045-1057.

5. Яковлев О. И., Якубов В. П., Урядов В.П., Павельев А. Г. Распространение радиоволн. М.: ЛЕНАНД, 2009, 496 с.

6. Назаров Л.Е., Батанов В.В. Вероятностные характеристики обнаружения радиоимпульсов при распространении по ионосферным линиям спутниковых линий связи. // Радиотехника и электроника. 2017. Т.62. №9. Стр.1-9.

7. Назаров Л. Е., Батанов В.В. Анализ искажений радиоимпульсов при распространении по ионосферным линиям передачи спутниковых систем связи. // Электромагнитные волны и электронные системы. 2016. Т.21. №5. С. 37-45.

8. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. Пер. с англ. М.: Издательский дом "Вильямс", 2003, 1104 с.

9. Гинзбург В.Л. Распространение электромагнитных волн в плазме. М.: Наука, 1967, 688 с.

10. Ionospheric propagation data and prediction methods required for the design of satellite services and systems. Recommendation ITU-R P.531-11 (01/2012).