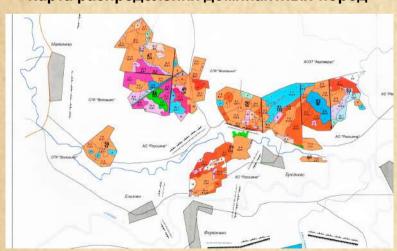
XVIII Всероссийская Открытая конференция «СОВРЕМЕННЫЕ ПРОБЛЕМЫ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА» 16 - 20 ноября 2020 г., Москва, ИКИ РАН

ПОВЫШЕНИЕ ИНФОРМАТИВНОСТИ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ДРЕВОСТОЕВ НА ОСНОВЕ СОВМЕСТНОЙ ОБРАБОТКИ МНОГОСПЕКТРАЛЬНЫХ И ПАНХРОМАТИЧЕСКИХ СПУТНИКОВЫХ ИЗОБРАЖЕНИЙ ВЫСОКОГО РАЗРЕШЕНИЯ

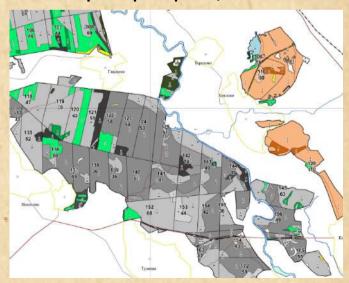
Кондранин Т.В. (МФТИ), Дмитриев Е.В. (ИВМ РАН), Зотов С.А. (МФТИ), Мельник П.Г. (МГТУ им. Н. Э. Баумана), Донской С.А. (Рослесинфорг)



Актуализация лесотаксационных данных

Эффективное управление лесным хозяйством на территории Российской Федерации подразумевает сбор, систематизацию и своевременную актуализацию лесотаксационных данных. Традиционным методом дистанционного получения информации о параметрах лесных территорий, применяемым в последние годы и составляющим альтернативу дорогостоящим наземным обследованиям, является анализ мультиспектральных спутниковых данных

Государственная инвентаризация лесов (ГИЛ) является важнейшим элементом лесоучетных работ. Работы по ГИЛ осуществляются с 2007 г. Для определения количественных и качественных характеристик лесов, систематического контроля изменения их состояния создается сеть постоянных пробных площадей. Всего в рамках государственной инвентаризации лесов заложено более 47 тыс. постоянных пробных площадей.


Карта распределения доминантных пород

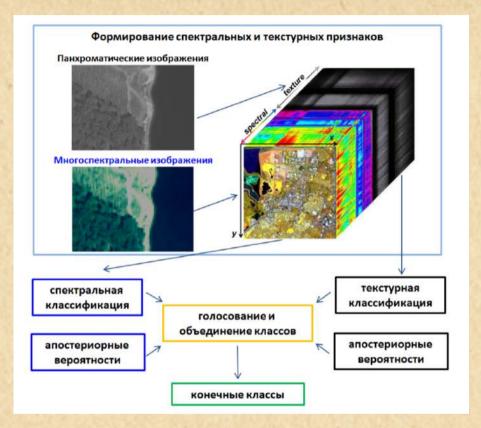
Карта расположения пробных площадей

Карта стратификации лесов

Используемые спутниковые данные

Landsat 8

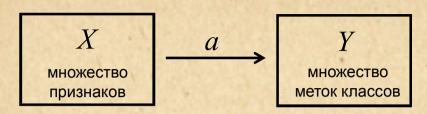
Режим съемки	VNIR	SWIR	PAN	TIR
Спектральный диапазон, мкм	0,43–0,45 (фиолетовый или coastal) 0,45–0,52 (синий) 0,53–0,60 (зеленый) 0,63–0,68 (красный) 0,85–0,89 (ближний ИК)	1,36–1,39 (Cirrus) 1,57–1,65 (SWIR-1) 2,11–2,29 (SWIR-2)	0,50–0,68	10,6-11,19 (TIRS 1) 11,5-12,51 (TIRS 2)
Пространственное разрешение (в надире), м	30	30	15	100
Радиометрическое разрешение, бит на пиксель	12			- FEET
Ширина полосы съемки, км	185			
Периодичность съемки, сутки	16			

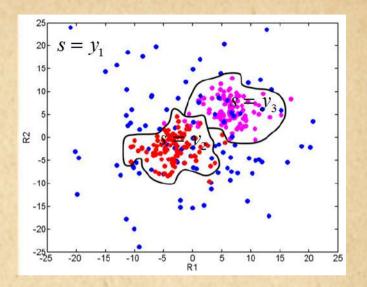

Sentinel 2

Спектральный диапазон, мкм	0,490; 0,560; 0,665; 0,842	0,705; 0,740; 0,783; 0,865; 1,610; 2,190	0,443; 0,945; 1,375
Пространственное разрешение (в надире), м	10	20	60
Радиометрическое разрешение, бит на пиксель	12		
Ширина полосы съемки, км	290		
Периодичность съемки, сутки	10		

WorldView 2

Режим съемки	Панхроматический	Мультиспектральный
Спектральный диапазон, мкм	0,50-0,90	0,40–0,45 (фиолетовый или coastal)
		0,45–0,51 (синий)
		0,51–0,58 (зеленый)
		0,585–0,625 (зеленый)
		0,63–0,69 (красный)
		0,705–0,745 (крайний красный или red-edge)
		0,77–0,895 (ближний ИК-1)
		0,86–1,04 (ближний ИК-2)
Пространственное разрешение (в надире), м	0,46	1,84
Максимальное отклонение от надира, град	40	
Ширина полосы съемки, км	16,4	
Производительность съемки, млн кв.	0,75	
км/сутки		At the
Периодичность съемки, сутки	1,1-3,7 (в зависимости о	т широты области съемки)


Общая схема совместной обработки многоспектральных и панхроматических изображений


Основные этапы обработки

- 1. Предварительная обработка многоспектральных и панхроматических спутниковых изображений.
- 2. Извлечение спектральных и текстурных признаков.
- 3. Формирование обучающей информации: сопоставление спектральных и текстурных признаков классифицируемым объектам, кластерный анализ признаков.
- 4. Оптимизация признаков, обучение и классификация.
- 5. Постобработка: коррекция результатов классификации на основе методов математической морфологии.

Обучаемая классификация

Целью обучаемой классификации является построение алгоритма $a(x): X \to Y$, который бы приводил к наименьшим ошибкам на обучающем множестве $X^N = \{x(i), y(i)\}_{i=1}^N$

Используемые алгоритмы

- 1. Метод ближайшего центроида МБЦ
- 2. Линейный дискриминантный анализ ЛДА.
- 3. Квадратичный дискриминантный анализ КДА.
- 4. Оптимизированный метод К ближайших соседей ОКБС
- 5. Метод самокорректирующихся кодов (базовый классификатор метод опорных векторов) МСК-МОВ
- 6. Случайный лес с бутстрэп агрегированием СЛБА
- 7. Случайный лес с рандомизированным (случайным) усилением СЛСУ

Статистические текстурные признаки

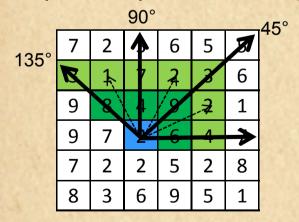
Характеристики 1-го порядка

Расчет текстурных признаков

$$\mu = \frac{1}{N} \sum_{i,j=1}^{N_i, N_j} x(i,j)$$

$$d = \frac{1}{N} \sum_{i=1}^{N_i, N_j} x^2(i, j)$$

3. Энтропия
$$S = -\sum_{i=1}^{N_g} F(\alpha_i) \log \alpha_i$$


$$E = \sum_{i=1}^{Ng-1} F^2(g)$$

$$V = \sum_{n=0}^{Ng-1} (g - \mu)^2 F(g)$$

1. Среднее
$$\mu = \frac{1}{N} \sum_{i,j=1}^{N_i,N_j} x(i,j)$$
2. Средний квадрат
$$d = \frac{1}{N} \sum_{i,j=1}^{N_i,N_j} x^2(i,j)$$
3. Энтропия
$$S = -\sum_{g=0}^{N_g} F(g) \log F(g)$$
4. Энергия
$$E = \sum_{g=0}^{N_g-1} F^2(g)$$
5. Дисперсия
$$V = \sum_{g=0}^{N_g-1} (g-\mu)^2 F(g)$$

Характеристики 2-го порядка

Направление и расстояние смежности

Нормированная GLCM по сути является функцией вероятности распределения совместной встречаемости заданного числа градаций серого

Построение матрицы совместной встречаемости уровней серого

$$p(i, j) = \frac{GLCM(i, j)}{\sum_{i,j=1}^{N} GLCM(i, j)}$$

	GLCM									
		1	2	3	4	5	6	7	8	9
	1	0	0	0	0	0	0	1	0	0
	2	0	1	1	0	1	1	0	0	0
	3	1	U	U	Û	100	2	0	0	0
	4	0	0	0	0	0	0	0	0	1
į	5	co	0	0	0	0	0	0	0	0
	6	0	0	0	0	0	0	0	0	1
	7	0	4	0	0	0	0	0	0	0
	8	0	0	1	1	0	0	0	0	0
	9	0	0	0	0	0	0	1	1	0

Текстурные признаки Харалика

Наименование признака	Формула
Автокорреляция (Autocorrelation)	$\sum_{i=1}^{N} \sum_{j=1}^{N} i \cdot j \cdot p(i,j)$
Островершинность (Cluster Prominence)	$\sum_{i=1}^{N} \sum_{j=1}^{N} (i+j-\mu_{i}-\mu_{j})^{4} \cdot p(i,j)$ $\sum_{i=1}^{N} \sum_{j=1}^{N} (i+j-\mu_{i}-\mu_{j})^{3} \cdot p(i,j)$ $\sum_{i=1}^{N} \sum_{j=1}^{N} (i-j)^{2} \cdot p(i,j)$
Асимметрия (Cluster Shade)	$\sum_{i=1}^{N} \sum_{j=1}^{N} (i + j - \mu_i - \mu_j)^3 \cdot p(i, j)$
Контраст (Contrast)	$\sum_{i=1}^{N} \sum_{j=1}^{N} (i-j)^{2} \cdot p(i,j)$
Корреляция (Correlation)	$\sum_{i=1}^{N} \sum_{j=1}^{N} (i - \mu_i) \cdot (j - \mu_j) \cdot p(i,j) / (\sigma_i \cdot \sigma_j)$
Энтропия разности (Diffrence Entropy)	$-\sum_{k=0}^{N-1} p_{i-j}(k) \cdot \ln p_{i-j}(k)$
Дисперсия разности (Diffrence Variance)	$\sum_{k=0}^{N-1} (k - \mu_{i-j})^2 \cdot p_{i-j}(k)$
Неоднородность (Dissimilarity)	$\sum_{i=1}^{N} \sum_{j=1}^{N} i-j \cdot p(i,j)$ $\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j)^{2}$
Энергия (Energy)	$\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j)^{2}$
Энтропия (Entropy)	$-\sum_{i=1}^{N}\sum_{j=1}^{N}p(i,j)\cdot \ln p(i,j)$
Однородность (Homogeneity)	$\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j) / (1+ i-j)$
Однородность2 (Homogeneity2)	$\sum_{i=1}^{N} \sum_{j=1}^{N} p(i,j) / (1 + (i-j)^{2})$
Первая информационная мера	$(HXY - HXY1) / \max(HX, HY)$
корреляции (Information Measure of Correlation 1)	
Вторая информационная мера	$\sqrt{1-\exp(-2(HXY2-HXY))}$
корреляции	
(Information Measure of Correlation 2)	/: :>
Максимум вероятности (Maximum Probability)	$\max_{i,j} p(i,j)$
Среднее суммы (Sum Average)	$\sum_{k=2}^{2N} k \cdot p_{i+j}(k)$
Энтропия суммы (Sum Entropy)	
Сумма квадратов (Sum Squares)	$-\sum_{k=2}^{2N} p_{i+j}(k) \cdot \ln p_{i+j}(k)$ $\sum_{i=1}^{N} \sum_{j=1}^{N} (i - \mu_i)^2 \cdot p(i,j)$
Дисперсия суммы (Sum Variance)	$\sum_{k=2}^{2N} (k - \mu_{i+j})^2 \cdot p_{i+j}(k)$

1) средний индекс

$$\mu_i = \sum_{i=1}^{N} \sum_{j=1}^{N} i \cdot p(i, j), \ \mu_j = \sum_{i=1}^{N} \sum_{j=1}^{N} j \cdot p(i, j);$$

2) среднеквадратичное отклонение (СКО) индекса

$$\sigma_i = \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} (i - \mu_i)^2 \cdot p(i, j)};$$

3) вероятность разности индексов

$$p_{i-j}(k) = \sum_{|i-j|=k} p(i,j);$$

4) вероятность суммы индексов

$$p_{i+j}(k) = \sum_{i+j=k} p(i,j);$$

5) энтропии

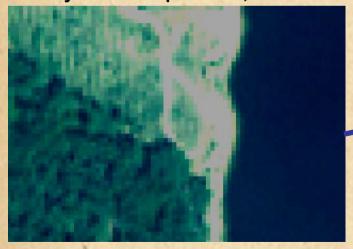
$$HX = -\sum\nolimits_{i=1}^{N} p_{x}(i) \cdot \ln \ p_{x}(i), \ HY = -\sum\nolimits_{j=1}^{N} p_{y}(j) \cdot \ln \ p_{y}(j),$$

$$HXY = -\sum_{i=1}^{N} \sum_{j=1}^{N} p(i, j) \cdot \ln p(i, j),$$

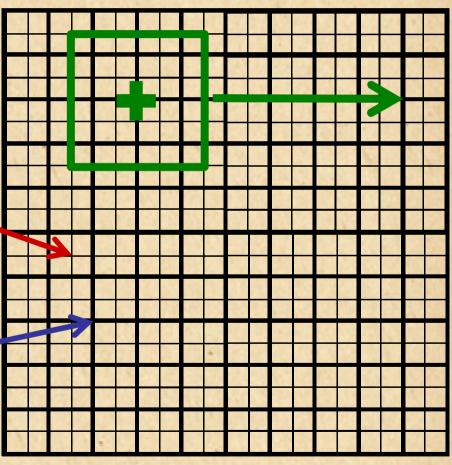
$$HXY1 = -\sum_{i=1}^{N} \sum_{j=1}^{N} p(i, j) \cdot \ln (p_x(i) \cdot p_y(j)),$$

$$HXY2 = -\sum_{i=1}^{N} \sum_{j=1}^{N} p_{x}(i) \cdot p_{y}(j) \cdot \ln(p_{x}(i) \cdot p_{y}(j)),$$

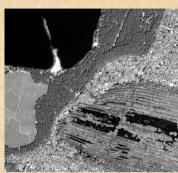
где
$$p_{x}(i) = \sum_{j=1}^{N} p(i,j), p_{y}(j) = \sum_{i=1}^{N} p(i,j).$$

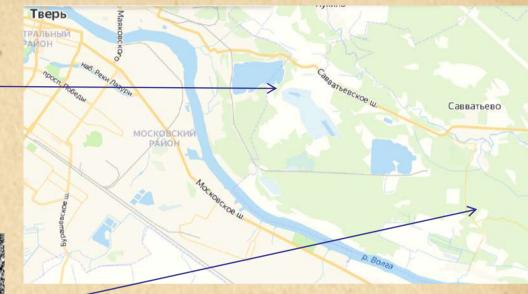

Извлечение текстурных признаков

при совместной обработке многоспектральных и панхроматических изображений

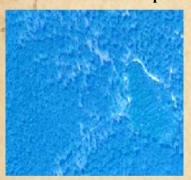

Панхноматическое, 0.46м

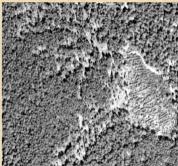
Мультиспектральное, 1.84 м

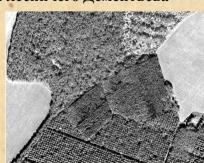

Скользящее окно движется по пикселям многоспектрального изображения



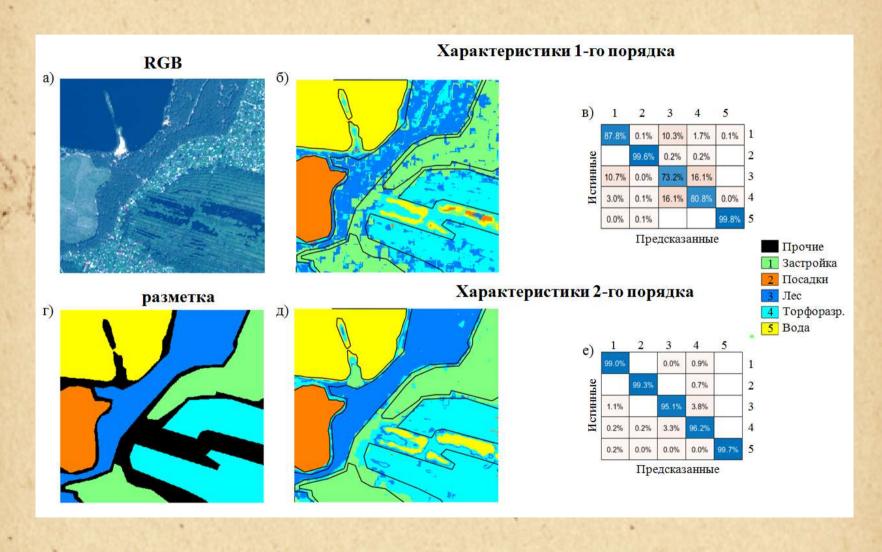
Расположение тестовых территорий


Константиновский



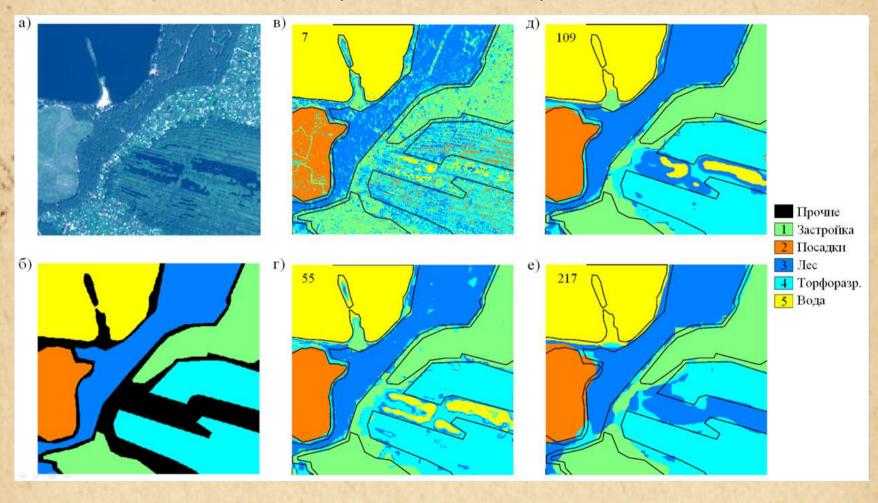

Тверской Посад

Географические посадки лесничего Дементьева

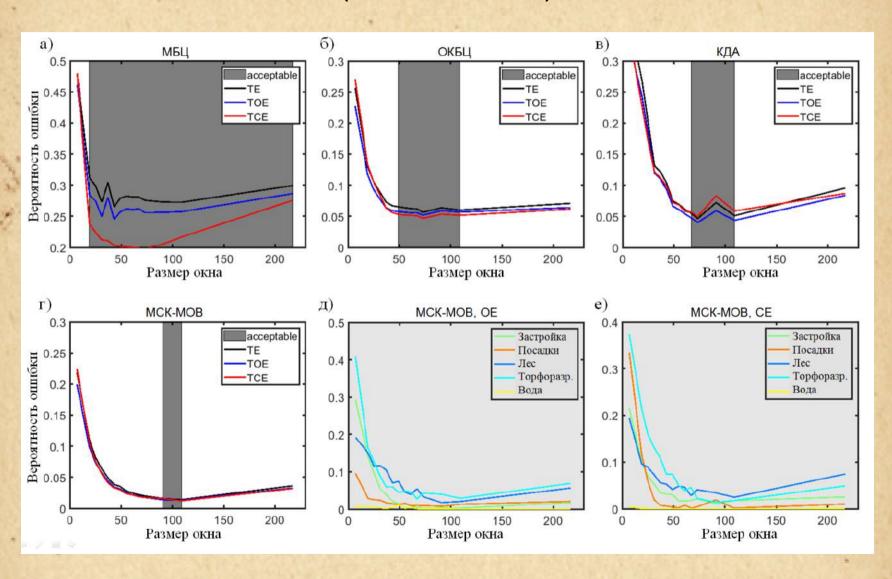


Корреляция текстурных признаков по направлениям смежности пикселей

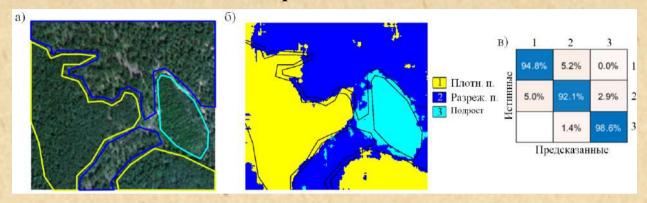
Признак	$ ho_{ m min}$	$\alpha(\rho_{min})$	ρ_{max}	$\alpha(\rho_{max})$
Autocorrelation	1	90-0	1	135-45
ClusterProminence	0.99	90-0	1	135-90
ClusterShade	0.99	135-45	0.99	135-90
Contrast	0.81	135-45	0.95	135-90
Correlation	0.96	135-45	0.98	135-90
DiffEntropy	0.96	90-0	0.99	135-90
DiffVariance	0.72	135-45	0.94	135-90
Dissimilarity	0.93	90-0	0.97	135-90
Energy	1	90-0	1	135-45
Entropy	1	90-0	1	135-90
Homogeneity	0.96	90-0	0.99	135-90
Homogeneity2	0.96	90-0	0.99	135-90
InfMeasureCorr1	0.94	90-0	0.97	135-90
InfMeasureCorr2	0.98	90-0	0.99	135-45
MaxProb	0.99	90-0	1	90-45
SumAverage	1	90-0	1	135-45
SumEntropy	1	90-0	1	90-45
SumSquares	1	90-0	1	135-45
SumVariance	1	90-0	1	135-90


Текстурные классификации с использованием характеристик 1-го и 2-го порядков

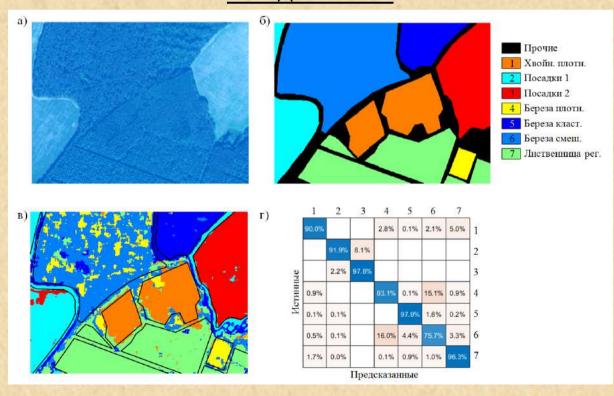
(Константиновский)


Текстурная классификация в зависимости от размера скользящего окна

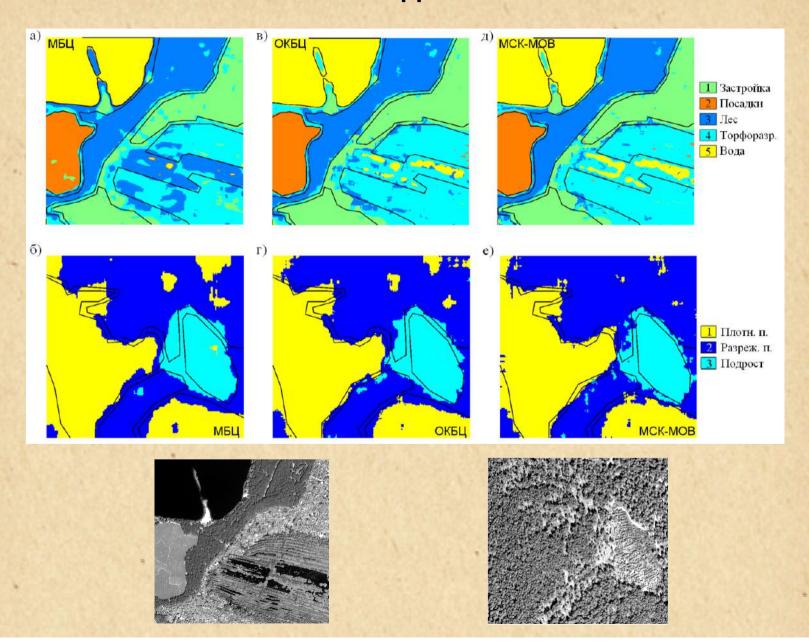
(Константиновский)


Ошибка текстурной классификации различными методами в зависимости от размера скользящего окна

(Константиновский)



Классификация структурных особенностей лесного полога

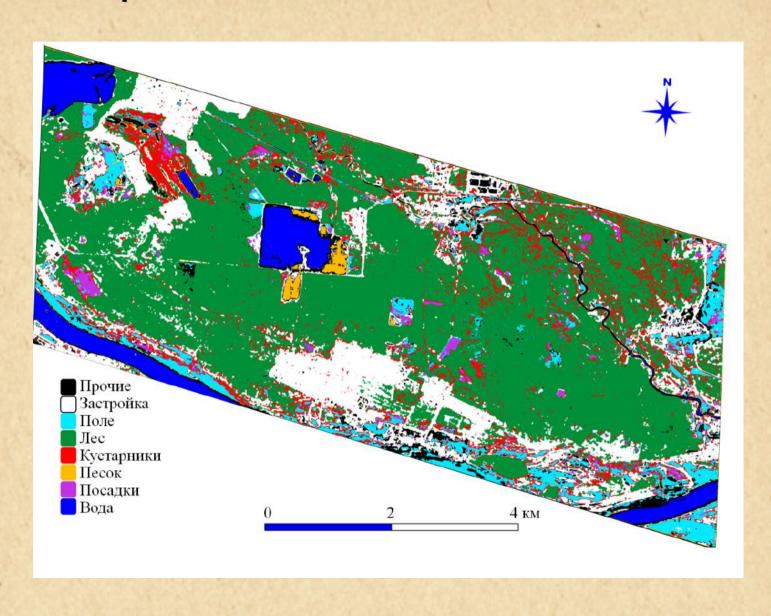

Тверской Посад

ГПЛ Дементьева

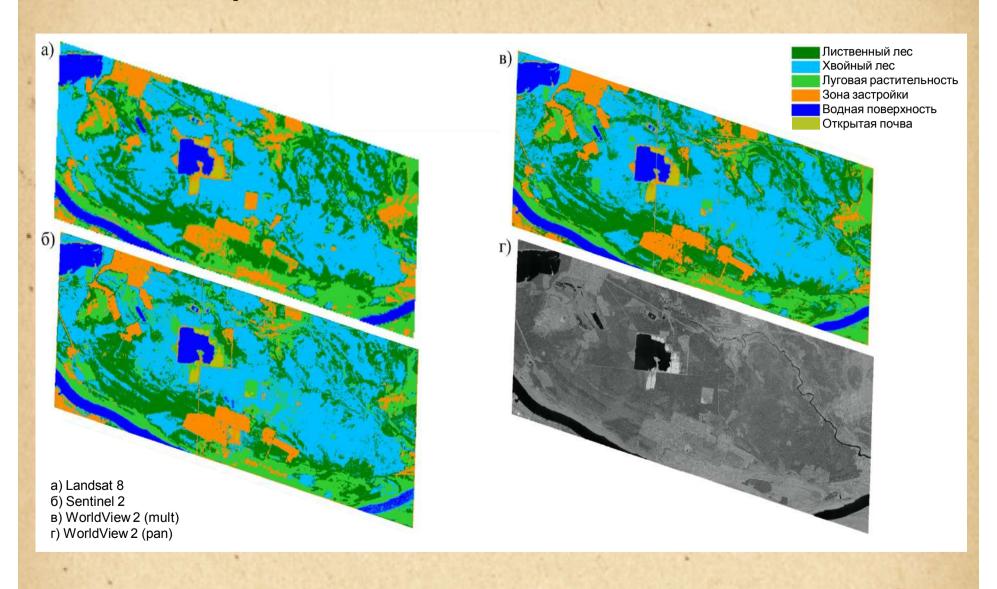
Текстурная классификация тестовых участков различными методами

Характеристики эффективности методов текстурной классификации панхроматических изображений выбранных тестовых участков

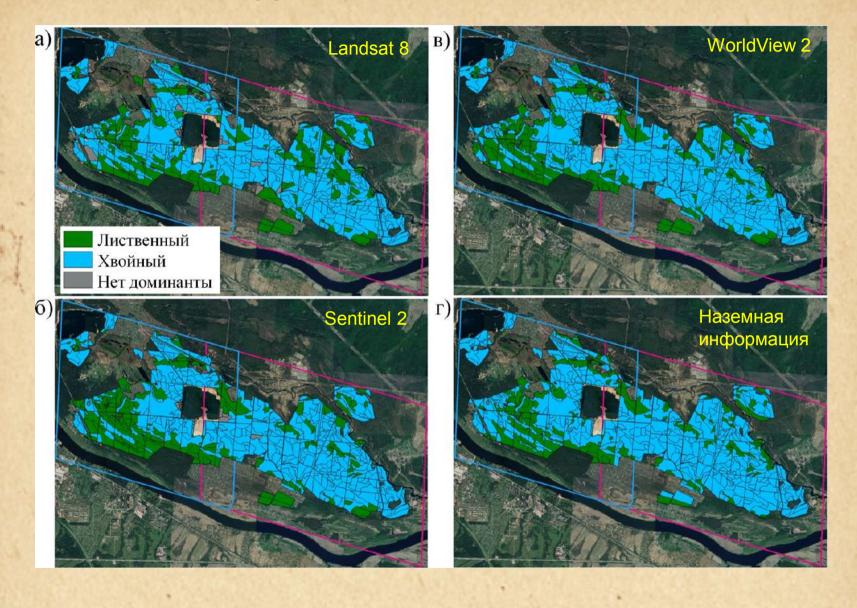
Вероятности ошибок

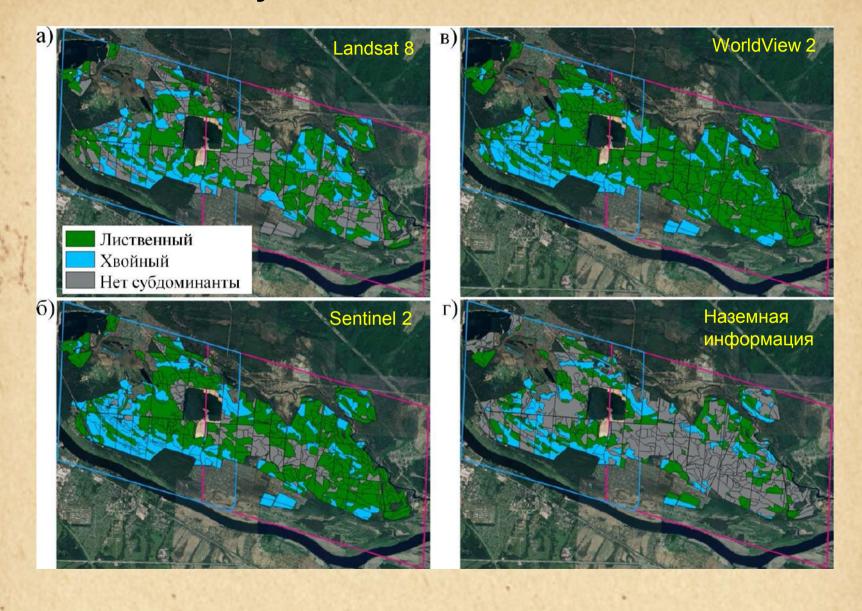

		MEH	шшл	TOTA	OKEC	MOIC MOD	CHEA	CHOV
	of the same	МБЦ	ЛДА	КДА	ОКБС	МСК-МОВ	СЛБА	СЛСУ
TC	TE	0.083	0.083	0.058	0.041	0.025	0.027	0.030
Констан-	TOE	0.075	0.073	0.049	0.035	0.022	0.024	0.026
ТИНОВСКИИ	TCE	0.079	0.077	0.053	0.035	0.022	0.025	0.027
T	TE	0.122	0.113	0.110	0.094	0.063	0.088	0.089
Тверской Поса д	TOE	0.102	0.092	0.086	0.071	0.048	0.070	0.071
Посад	TCE	0.174	0.155	0.159	0.143	0.097	0.140	0.141
THE T	TE	0.194	0.192	0.132	0.121	0.078	0.125	0.135
ГПЛ Дементьева	TOE	0.194	0.161	0.110	0.104	0.062	0.119	0.115
дементвева	TCE	0.227	0.202	0.194	0.188	0.155	0.2016	0.191

Скорость обработки, мкс/ пикс.


ЧОР	МБЦ	ЛДА	КДА	ОКБС	мск-мов	СЛБА	СЛСУ
100	0.15	0.55	0.57	6.56	3.52	25.06	-
500	0.14	0.56	0.58	13.50	5.26	25.56	24.82
1000	0.10	0.59	0.57	20.44	6.65	25.24	24.74

ЧОР - число обучающих реализаций (для каждого класса)


Текстурная классификация сшивки панхроматических изображений Савватьевского лесничества


Совместная спектрально-текстурная классификация изображений Савватьевского лесничества

Доминантные отделы

Субдоминантные отделы

Оценки точности классификации и тематических карт

Метод классификации	Мультиспек. данные	Используемые признаки	Точность по дом-там	Точность по субдом-там	Точность по кросс- валидации
Carlotte Carlotte		Спектральные	0,834	0,709	0,732
	Landsat 8	Спектральные и текстурные	0,853	0,762	0,852
		Спектральные	0,861	0,763	0,788
Random forest	Sentinel 2	Спектральные и текстурные	0,836	0,719	0,930
the day		Спектральные	0,852	0,767	0,624
3	WorldView 2	Спектральные и текстурные	0,857	0,770	0,924
The second	是 公司 大师	Спектральные	0,840	0,708	0,774
	Landsat 8	Спектральные и текстурные	0,842	0,728	0,777
	Sentinel 2 WorldView 2	Спектральные	0,867	0,767	0,793
K nearest neighbors		Спектральные и текстурные	0,851	0,741	0,794
		Спектральные	0,876	0,793	0,666
		Спектральные и текстурные	0,882	0,815	0,928
		Спектральные	0,835	0,708	0,778
	Landsat 8	Спектральные и текстурные	0,847	0,744	0,890
Quadratic discriminant		Спектральные	0,880	0,801	0,800
analysis	Sentinel 2	Спектральные и текстурные	0,872	0,777	0,859
		Спектральные	0,885	0,800	0,602
	WorldView 2	Спектральные и текстурные	0,865	0,781	0,875

Выводы

Использование текстурной информации, извлекаемой из панхроматических изображений сверхвысокого разрешения позволяет повысить точность тематической обработки мультиспектральных изображений среднего и высокого разрешения. Сравнение статистических текстурных характеристик при обработке изображений выбранных тестовых участков показало преимущество характеристик 2 порядка. Приводится обоснование выбора параметров статистического алгоритма извлечения текстурных признаков, выделены признаки чувствительные к направлению смежности, приемлемый диапазон размеров скользящего окна 50-110 пикселей. Показаны возможности классификации структурных особенностей лесного полога. Проведено сравнение точностей традиционных и ансамблевых алгоритмов классификации. Показано преимущество ансамблевого подхода при решении данной задачи, метод МСК-МОВ демонстрирует значимо более высокую точность (97 и 88%) при решении задач различной степени сложности.