Краткосрочный прогноз конвективных опасных явлений погоды в Уральском регионе в теплый период 2020 г. с верификацией по данным Meteosat-8

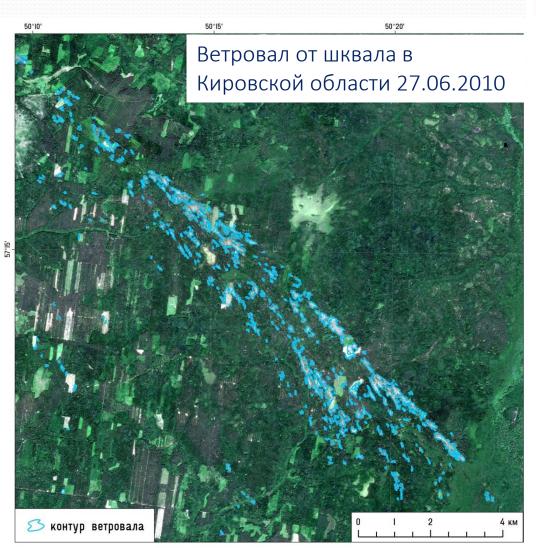
Шихов А.Н. ⁽¹⁾, Калинин Н.А. ⁽¹⁾, Быков А.В. ⁽¹⁾, Поморцева А.А. ⁽¹⁾, Ажигов И.О. ⁽¹⁾

^{1–}Пермский государственный национальный исследовательский университет

Исследование выполнено при поддержке гранта Президента РФ № 313.2020.5 и РФФИ (проект № 19-05-00046-а)

Актуальность и цель работы

- Краткосрочный прогноз конвективных опасных явлений погоды (ОЯ), прежде всего места и времени их возникновения, является одной из важнейших проблем современной метеорологии
- Существует два основных подхода к прогнозу конвективных ОЯ на основе моделей численного прогноза погоды (ЧПП) ингредиентный подход (по данным низкого горизонтального разрешения) и прямое моделирование конвекции (по данным высокого разрешения 3-5 км и детальнее).
- Плохо изучена в России проблема ложных тревог при краткосрочном прогнозе конвективных штормов на основе прямого моделирования конвекции
- В 2020 г. <u>получен полный ряд данных глобальных моделей ЧПП GFS, GEM, а также оперативной версии региональной модели WRF версии 4.1</u>. для территории Урала
- Цель работы получить оценки успешности краткосрочного прогноза наиболее значимых случаев конвективных ОЯ в теплый период 2020 г. в Уральском регионе на основе этих данных

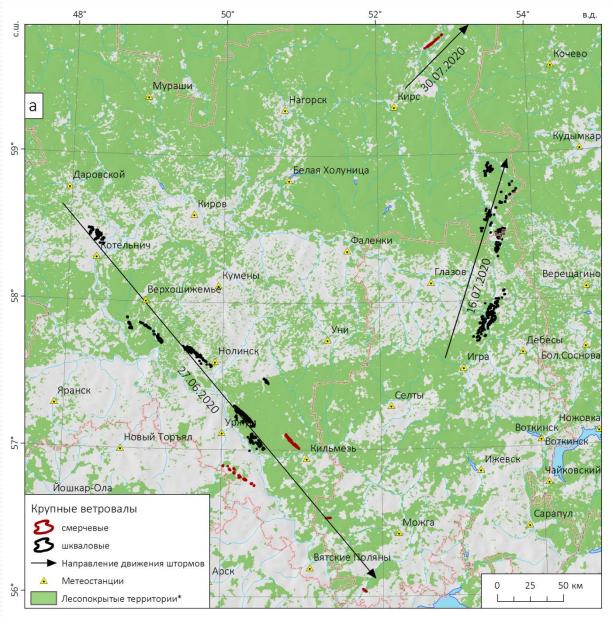

Исходные данные

- Данные наблюдений
- Данные сети метеостанций (зафиксированные случаи ОЯ)
- Сведения об ущербе, полученные из средств массовой информации и социальных сетей (геокодированы по населенным пунктам)
- Результаты мониторинга ветровалов по снимкам Sentinel-2
- Спутниковые снимки Meteosat-8
- Данные ДМРЛ для трех из шести рассматриваемых случаев
- Карты приземного анализа, кольцевые карты погоды и карты барической топографии, данные аэрологического зондирования
- **Данные моделирования** прогнозы по глобальным моделям ЧПП (GFS, GEM) и региональной модели WRF на срок 27 ч

Основные сведения о рассматриваемых случаях конвективных ОЯ и их вспышек

Дата, время (ВСВ)	Регион	Тип явления	Максимальная интенсивность и место наблюдения	Количество отчетов об ОЯ и ущербе по всем источникам данных	Характеристика ущерба
25.05.2020, 11.00 – 14.00	Свердловская область (южная часть)	Шквалы	30 м/с (Липовское) 27 м/с (Невьянск) 27 м/с (Сысерть)	57	4 человека погибли, повреждены кровли домов, повалены деревья, нарушено электроснабжение 100 тыс. потребителей
27.06.2020,	Кировская область,	Крупный град Шквалы	20 мм (Невьянск) 25 м/с (Вятские Поляны) 24 м/с (Кирс)	62	Ущерба нет Повреждены кровли зданий, автомобили, нарушено электроснабжение, сплошные ветровалы в лесах на площади ~1140 га
08.00 – 17.00	Удмуртия, Татарстан	Смерчи	≥ EF2 (Кильмезский, Уржумский районы)	9	Сплошные ветровалы на площади ~420 га
		Крупный град	40 мм (Оричевский район)	19	Уничтожен урожай, повреждены автомобили, кровли домов
16.07.2020, 16.00 – 23.00	Удмуртия, Кировская область, Пермский край	Шквал	25 м/с (Дебесы) 22 м/с (Гайны)	8	Нарушено электроснабжение в нескольких районах, сплошные ветровалы на общей площади 590 га
20.07.2020 12.00 – 20.00	Свердловская обл. (юго-запад), Пермский край (юго-восток)	Очень сильный дождь	Бисерть (82 мм/2 ч, 102 мм/15 ч), Октябрьский (62 мм/12 ч)	3	Ливневый паводок в г. Нижние Серги, разрушены и повреждены десятки жилых домов, ущерб 150 млн. руб
30.07.2020, 15.45	Кировская область, пос. Лойно	Смерч	EF2	1	Повреждены жилые дома, автомобили, сплошной ветровал на площади 132 га
31.07.2020, 12.45	г. Челябинск	Шквал	30 м/с (аэропорт Челябинск)	12	Пострадали три человека, поврежден газопровод, десятки домов и социальных объектов, повалены сотни деревьев,

Основные сведения о рассматриваемых случаях конвективных ОЯ и их вспышек

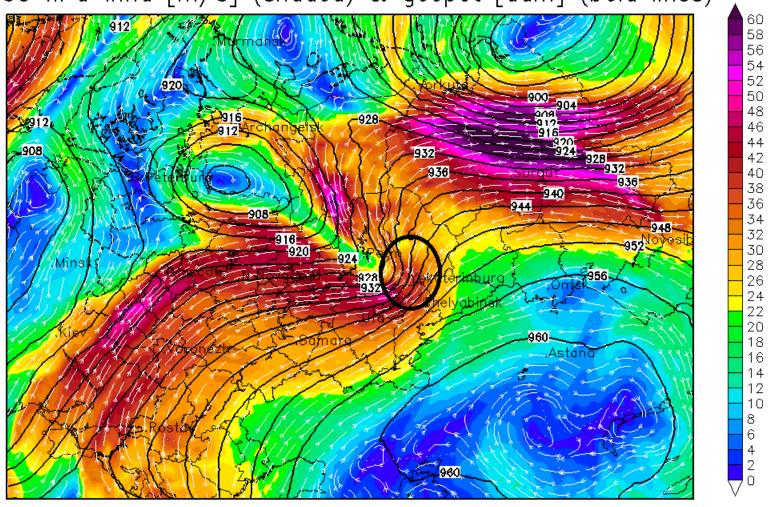


Разрушения от смерча в

Схема расположения ветровалов (по данным Sentinel-2)

Основные сведения об использованных глобальных моделях ЧПП

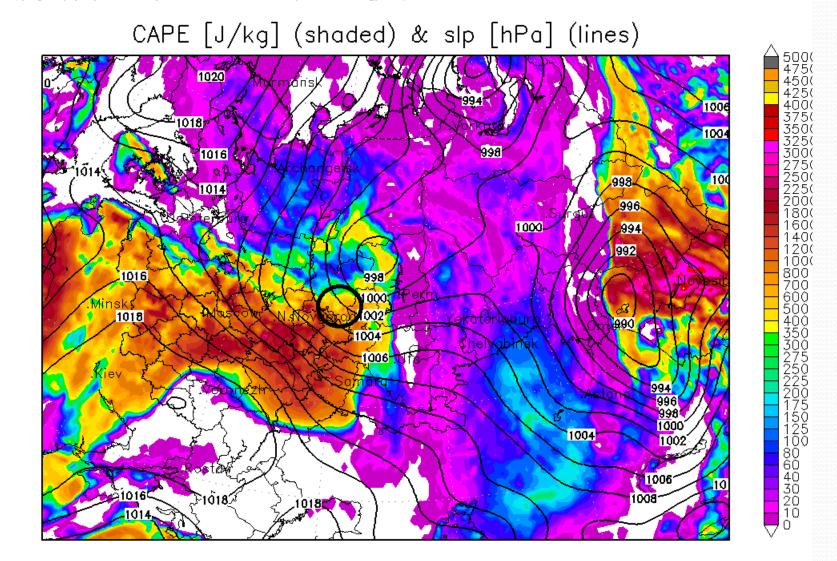
Модель ЧПП	Разработчик модели	Шаг сетки, км	Число вертикаль -ных уровней	Шаг сетки выходны х данных	Ссылка на получение данных
GFS	Национальный центр по прогнозированию окружающей среды (NCEP), США	13	64	0,25°	http://nomads.ncep.noa a.gov/pub/data/nccf/co m/gfs/prod/
GEM	Метеослужба Канады (СМС)	10	84	0,15°	https://dd.weather.gc.ca/ model_gem_global/


Конфигурация модели WRF для оперативного краткосрочного прогноза конвективных ОЯ по территории Уральского региона

Характеристика модели	Принятая настройка
Начальные и граничные условия	Прогноз GFS с шагом сетки 0,25° и шагом по времени 1 ч
Внешний домен (шаг сетки и число узлов)	9 км/333х333
Вложенный домен (шаг сетки и число узлов)	3 км/400×400
Координаты центра домена	58° N, 56° E
Число вертикальных уровней	48
Модель рельефа	U.S. Geological Survey (USGS) DEM (30s)
Максимальная заблаговременность	24 ч
прогноза	
Временной шаг вывода данных	1 4
Динамическое ядро	ARW
Шаг интегрирования по времени	Адаптивный
Микрофизика облачности	Схема Томпсона
Планетарный пограничный слой	Схема Меллора-Ямады-Янича (Eta)
Подстилающая поверхность	Модель Noah
Коротковолновая и длинноволновая	Схема GFDL (Eta)
радиация	
Приземный слой	Схема Монина-Обухова с вязким подслоем Карлсона-
	Боланда и стандартными функциями подобия
Конвекция	Прямое моделирование (без параметризации) на обоих доменах

Условия возникновения конвективных ОЯП 25.05.2020 г.

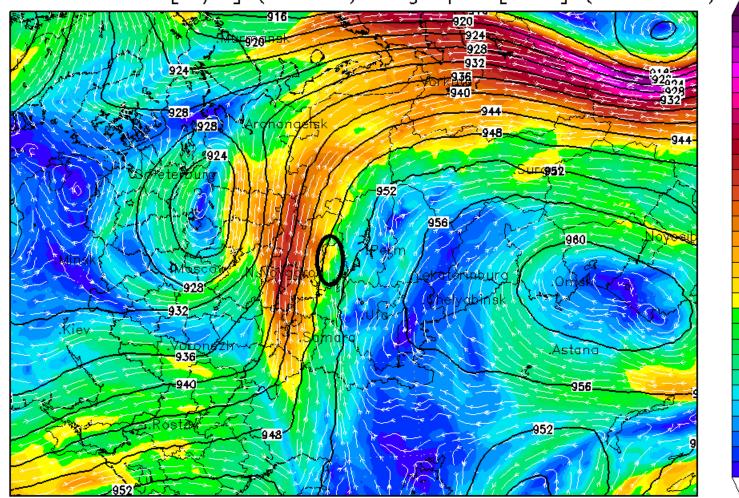
Copyright (C) Bykov Alexey, Perm State University, Meteorology Department



GFS Model Run: 00Z25MAY2020 Valid: 12Z25MAY2020

Условия возникновения конвективных ОЯП 27.06.2020 г.

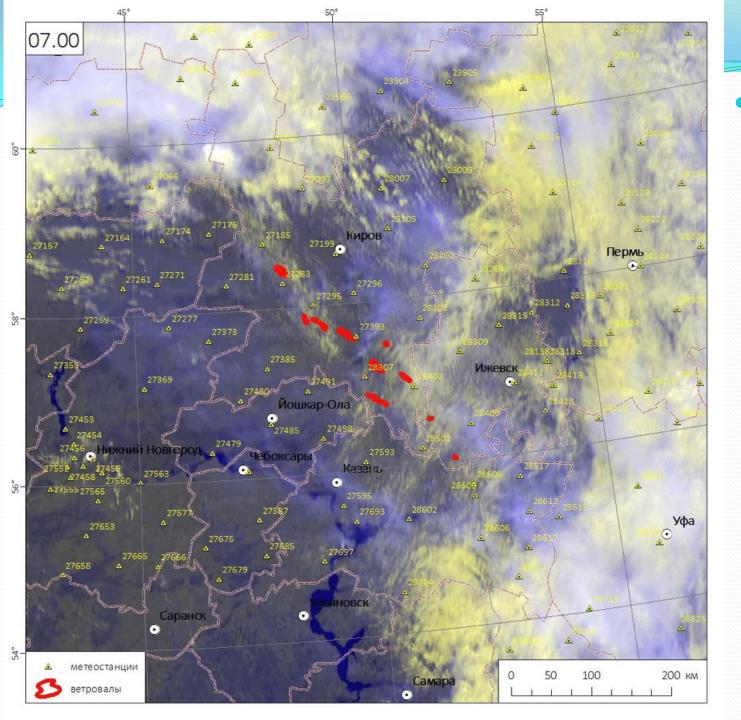
Copyright (C) Bykov Alexey, Perm State University, Meteorology Department

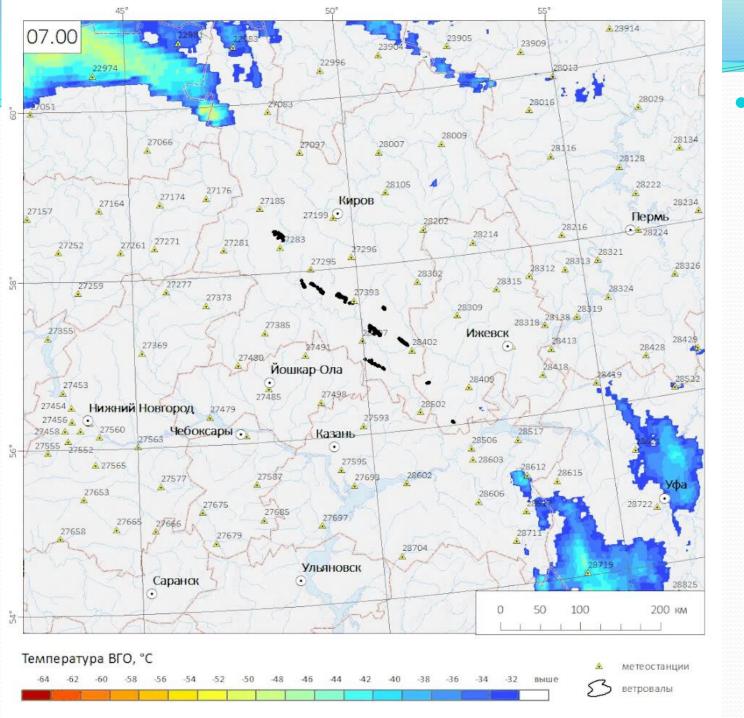


GFS Model Run: 12Z26JUN2020 Valid: 12Z27JUN2020

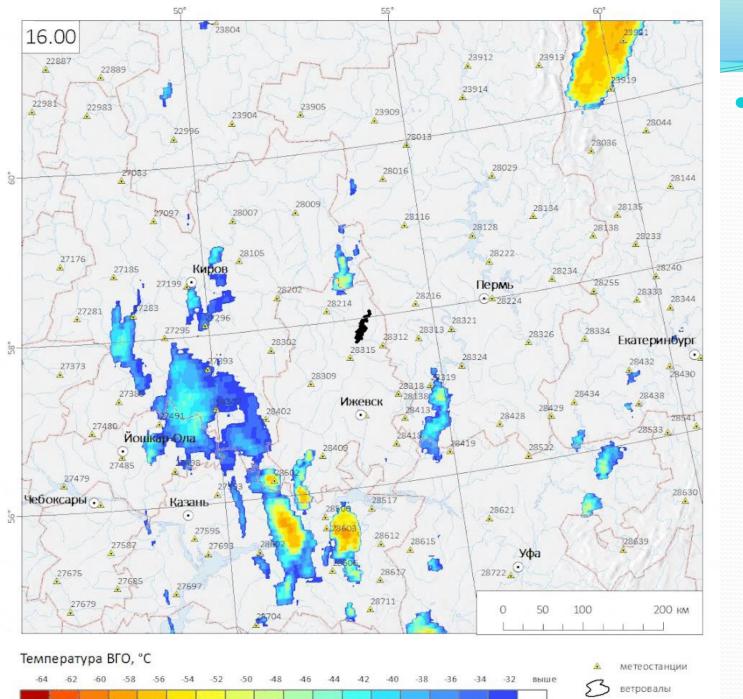
Условия возникновения конвективных ОЯП 16.07.2020 г.

Copyright (C) Bykov Alexey, Perm State University, Meteorology Department


300 hPa wind [m/s] (shaded) & geopot [dam] (bold lines)


GFS Model Run: 12Z16JUL2020 Valid: 18Z16JUL2020

Характеристика синоптических условий возникновения конвективных ОЯ и их вспышек

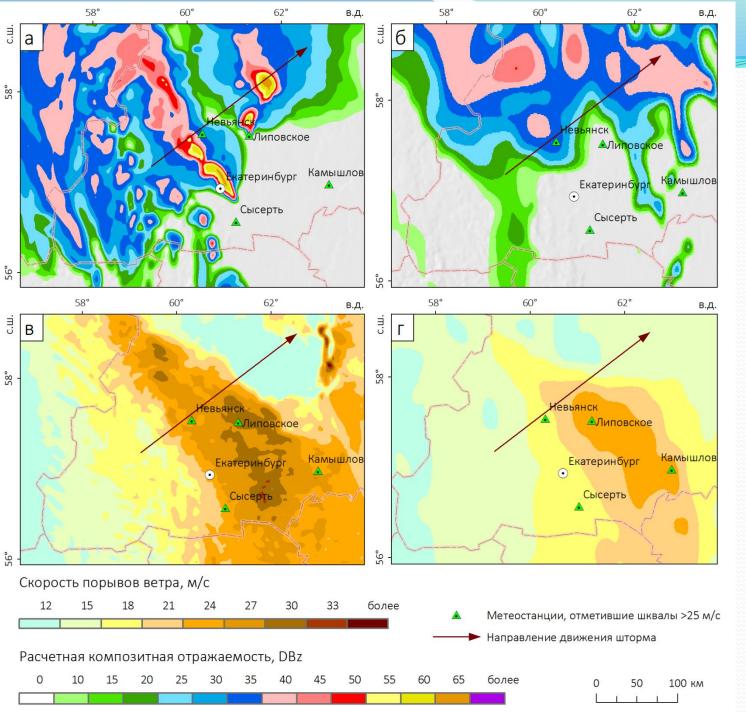

Дата, время	Харан	ктеристики ци	клона	Характери атмосфер фронт	Количественные характеристики*			. Тип конвектив-	
(BCB)	Происх ожден ие	Стадия развит ия	Направ ле-ние смеще ния	ТиТ	Ориент а-ция	$\Delta \Gamma_{850}$ °C/500	Td _{2m} , °C	V ₈₅₀ ,	ного шторма
25.05.2020, 11.00 – 14.00	местный	молодой	Ю3-СВ	холодный	Ю-С	17	16	23	Линия шквалов
27.06.2020, 08.00 – 17.00	ныряющий	молодой	СЗ-ЮВ	холодный у точки окклюзии	3-B	9	13	22	Линия шквалов
16.07.2020, 16.00 – 23.00	южный	заполня- ющийся	Ю3-СВ	мало- подвижный с волнами	ЮЮ3- ССВ	9	16	13	MKK
20.07.2020 12.00 – 20.00	местный	заполня- ющийся	B-3	мало- подвижный с волнами	ВЮВ- 3С3	3	18	6	Скопление штормов масштаба мезо- β
30.07.2020, 15.45	западный	молодой	3С3-ВЮВ	холодный у точки окклюзии	ЮЮ3- ССВ	3	19	15	Суперячейка
31.07.2020, 12.45	западный	макс. развитие	мало- подвижный	мало- подвижный	3Ю3- ВСВ	6	13	11	Суперячейка

Анимация
развития
шторма 27
июня 2020 г.
по данным
Меteosat-8,
синтез HRV HRV-IR

Анимация развития шторма 27 июня 2020 г. по данным Meteosat-8, температура верхней границы облаков

Анимация развития шторма 27 июня 2020 г. по данным Meteosat-8, температура верхней границы облаков

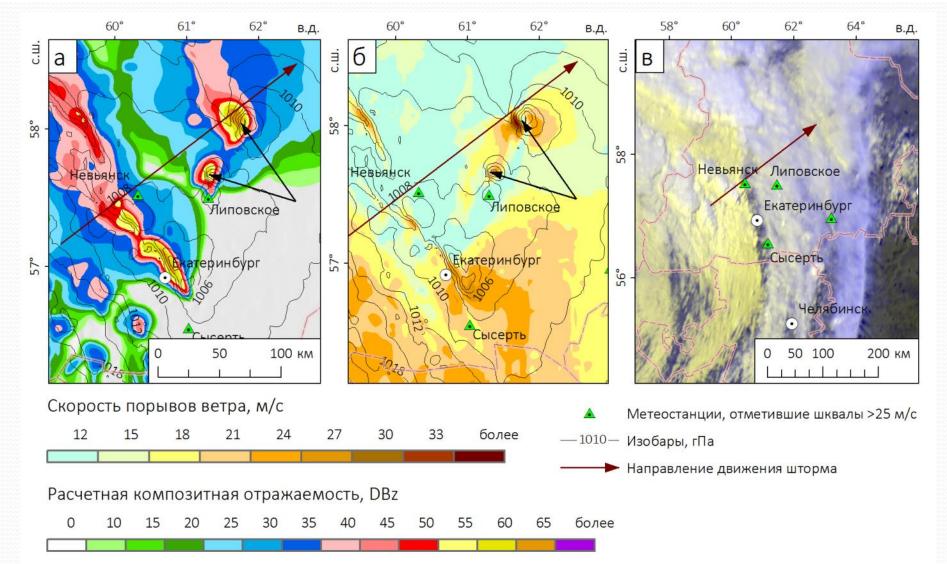
Радиолокационные характеристики опасных конвективных ОЯ

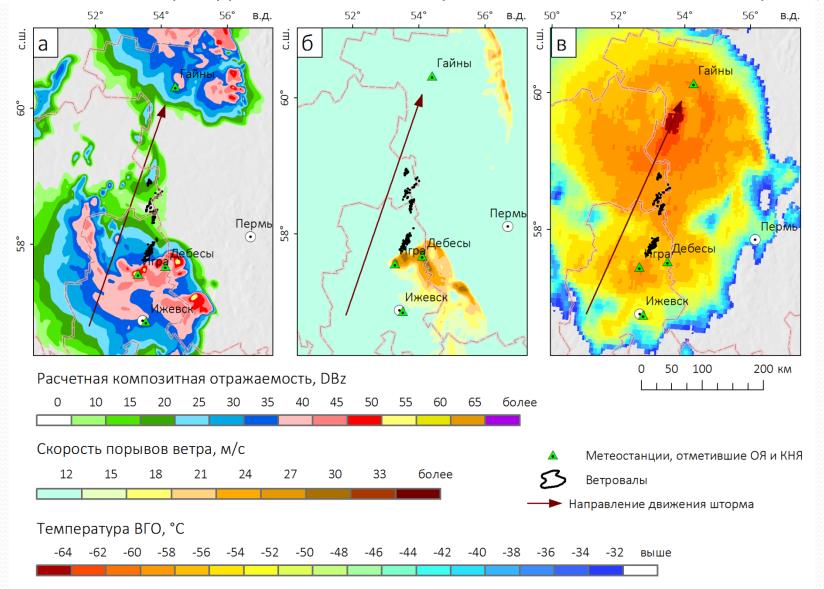

Дата, время (ВСВ)	Вид явления	Максимальная отражаемость в ядре радиоэха (Z _{max}), DBz	Средняя отражаемость в ядре радиоэха, DBz	Средняя высота зоны максимальной отражаемости, км	Средняя максимальная высота Cb с ОЯ, км	
27.06.2020, 08.00 – 16.00	Шквалы, смерчи, крупный град	65	53	7,6	13,5	
16.07.2020, 16.00 – 22.00	Шквал	60	52	10,8	14,4	
30.07.2020, 13.00 – 16.00	Смерч	60	48	4,9	12,7	

Диагностические переменные, рассчитанные по данным глобальных моделей атмосферы GFS (в числителе) и GEM (в знаменателе)

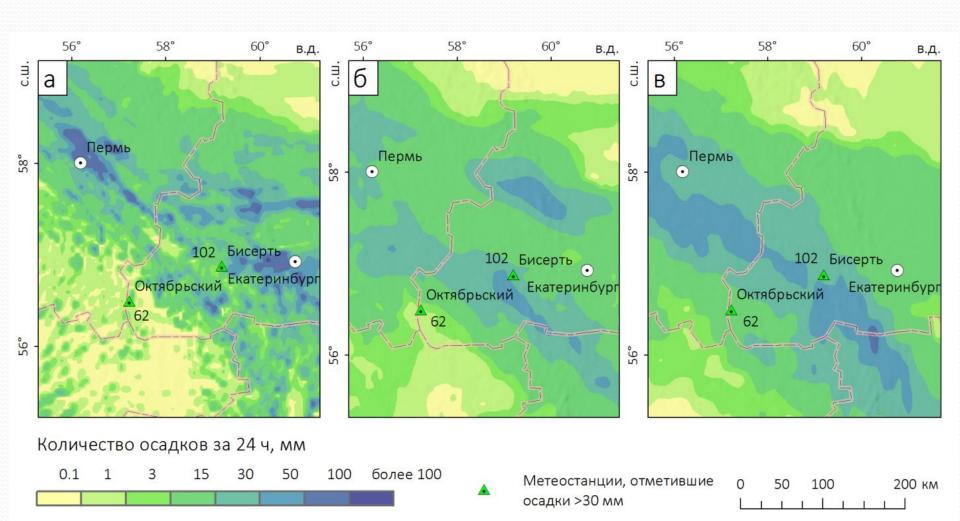
Дата, время (BCB)	SB CAPE, Дж/кг	K Index (°C)	Precipitable water (mm)	SWEAT	DLS, m/c	MLS, м/с	0-3 km SRH, м²/с²	SCP	EHI	WMAX- SHEAR
25.05.2020, 11.00	3372/ 2691	41/41	45/43	<u>563/556</u>	30/30	<u>31</u> /20	1127/ 1031	20.9/ 26.1	5.8/ 7.5	<u>1587/</u> <u>1782</u>
27.06.2020, 12.00	2122/ 2262	36/39	34/36	286/396	31 /29	22/21	172/ 300	3.2/ 7.0	1.5/ 2.6	1310/ 1210
16.07.2020, 19.00	2148/ 2849	41 /39	<u>46</u> /37	344/345	10/5	11/7	209/ 382	1.2/ 1.5	0.9/ 2.9	370/ 271
20.07.2020 12.00	1386/ 2062	36/40	44/43	240/303	9/10	7/9	215/ 196	0.6/ 0.6	0.7/ 1.1	377/ 451
30.07.2020, 15.00	582/ 1683	35/37	41/40	337/370	21/19	22/24	201/ 510	0.2/ 4.4	0.2/ 2.6	407/ 895
31.07.2020, 12.00	1830/ 2758	36/38	42/34	274/277	21/22	19/13	182/ 123	1.2/ 1.7	1.3/ 1.5	694/ 1036

Диагностические переменные, рассчитанные по фактическим данным радиозондирования атмосферы (PA) и по данным глобальных моделей атмосферы GFS и GEM (PA/GFS/GEM)


WMO ID станции, дата и время (BCB)	SB CAPE, Дж/кг	SB CIN, Дж/кг	K Index (°C)	Precipitable water (mm)	SWEAT	DLS, m/c	MLS, m/c
28445 25.05.2020, 12.00	366/22/ 1132	-156/ -104/-1	25/28/35	28/31/32	258/280/ 90	39/12/11	25/3/2
28225 16.07.2020, 12.00	1213/2895/ 2249	-156/- 32/-57	25/29/21	24/27/22	237/242/ 165	12/6/5	4/4/3
28225 20.07.2020, 12.00	170/11/529	-85/-1/0	35/32/37	35/38/42	235/207/ 217	5/4/8	4/1/4
27199 30.07.2020, 12.00	17/190/740	-88/0/-22	27/32/35	30/40/35	232/218/ 188	15/8/11	11/9/7


Прогноз вспышки ОЯ 25 мая 2020 года: расчетная композитная отражаемость и скорость порывов ветра по модели WRF (a, в) и GFS (б, г) за 13.00 BCB

Прогноз вспышки ОЯ 25 мая 2020 года: расчетная композитная отражаемость (а) и скорость порывов ветра (б) по модели WRF за 11.00 BCB, и снимок Meteosat-8 в синтезе каналов HRV-HRV-IR за этот же срок (в).


Черными стрелками (а, б) показаны мезоциклоны, которые прогнозировались по модели WRF

Прогноз вспышки ОЯ 16 июля 2020 года: расчетная композитная отражаемость (а) и скорость порывов ветра (б) по модели WRF за 22.00 ВСВ, и температура ВГО по снимку Meteosat-8 за этот же срок (в)

Прогноз очень сильного дождя 20 июля 2020 года: количество осадков за период с 3.00 BCB 20 июля по 3.00 BCB 21 июля по моделям WRF (a), GFS (б) и GEM (в)

Основные выводы

- Во всех случаях по данным одной или обеих глобальных моделей атмосферы (GFS и GEM) отмечались условия, благоприятные для развития конвективных ОЯ <u>CAPE > 1000 Дж/кг и наличие динамического фактора</u> (атмосферного фронта). При этом <u>модель GEM систематически завышала CAPE</u> в сравнении с данными модели GFS.
- **B 4-х случаях DLS и MLS превышал 20 м/с**, в двух достигал 30 м/с.
- Случаи ОЯ, связанные с конвективными системами масштаба мезо-α (МКК, линиями шквалов) хорошо воспроизводятся моделью WRF. Глобальные модели GFS и GEM также воспроизводят такие МКС, а в некоторых случаях и сами явления.
- Локальные явления, связанные с МКС масштаба мезо-β или суперячейками, вообще не воспроизводятся моделью
- Отмечены ложные тревоги по модели WRF 25.05.2020 г. завышение скорости ветра при шквале, и формирование двух мезоциклонов, которые не наблюдались. В случае 16.07.2020 г. модель воспроизводит формирование двух МКС с сильными шквалами вместо одной.

