

ПРИМЕНЕНИЕ ДАННЫХ СПУТНИКА САLIPSO ДЛЯ ОЦЕНКИ ХАРАКТЕРИСТИК МЕЗОМАСШТАБНЫХ КОНВЕКТИВНЫХ СИСТЕМ НАД ЮГОМ ЗАПАДНОЙ СИБИРИ

Жуков Д.Ф. 1 , Пустовалов К.Н. 1,2 , Кошикова Т.С. 2 , Нагорский П.М. 2 , Оглезнева М.В. 2

¹Национальный исследовательский Томский государственный университет (634050, Россия, г. Томск, пр. Ленина, 36; web: www.tsu.ru)

²Институт мониторинга климатических и экологических систем СО РАН (634021, Россия, г. Томск, пр. Академический, 10/3; web: www.imces.ru)

E-mail: den1szhuk0v@yandex.ru, const.pv@yandex.ru, tkoshikova@gmail.com, npm_sta@mail.ru, oglezneva.m@yandex.ru

Актуальность и цель исследования

В начале XXI века в регионах Северной Евразии отмечалось увеличение доли конвективных облаков. Сохранение данной тенденции приведёт к дальнейшему увеличению повторяемости конвективных облаков и связанных с ними неблагоприятных и опасных явлений: грозы, града, интенсивных ливневых осадков, шквалов и др.

Наиболее опасными проявлениями конвективной облачности являются мезомасштабные конвективные системы (МКС), которые отмечаются как в тропических, так и в умеренных широтах. На сегодняшний день МКС на юге Западной Сибири исследованы недостаточно, в частности нет детальных оценок структуры и характеристик вершин (наковален) МКС.

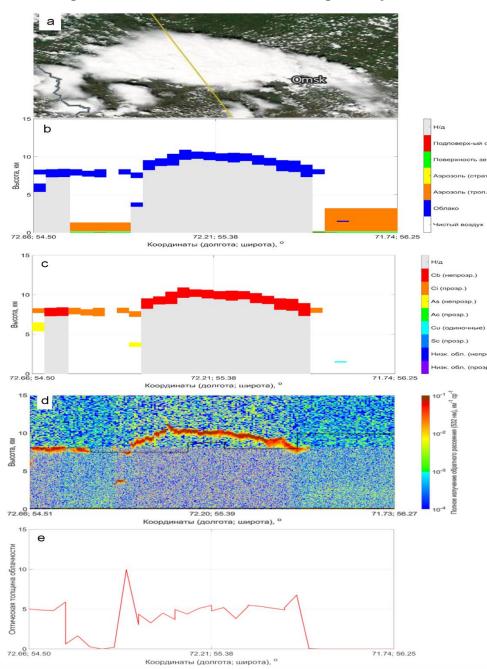
Цель работы: определение характеристик мезомасштабных конвективных систем над югом Западной Сибири по данным спутника CALIPSO за период 2010—2019 гг.

Вертикальный профиль облачности тропического циклона по данным лидара CALIOP + RGB-изображение циклона по данным MODIS 20 15 altitude (km) CALIPSO 10 profile 5 MODIS image

Основные задачи и использованные материалы

Задачи:

- 1. Дешифровка случаев прохождения МКС над югом Западной Сибири на основе изображений облачного покрова спектрорадиометров MODIS и VIIRS;
- 2. Отбор и обработка данных CALIPSO, соответствующих временным и пространственным границам выделенных случаев;
- 3. Оценка характеристик МКС, на основе масок слоёв облачности, типов облачности, полного излучения обратного рассеяния и оптической плотности в пределах МКС посредством написания скрипта;
- 4. Расчёт статичестических параметров исследуемых характеристик и оценка их изменчивости. Представление результатов расчёта в графическом и табличном виде;
- 5. Проведение комплексного анализа полученных результатов.


Данные:

- 1) спутниковые изображения в видимой части спектра (RGB-композиты), полученные по данным спектрорадиометров MODIS (спутник Aqua) и VIIRS (спутник Suomi NPP), на портале EOSDIS Worldview;
- 2) продукты первого и второго уровней обработки, полученны<mark>е по данным лидара CALIOP (спутник CALIPSO).</mark>

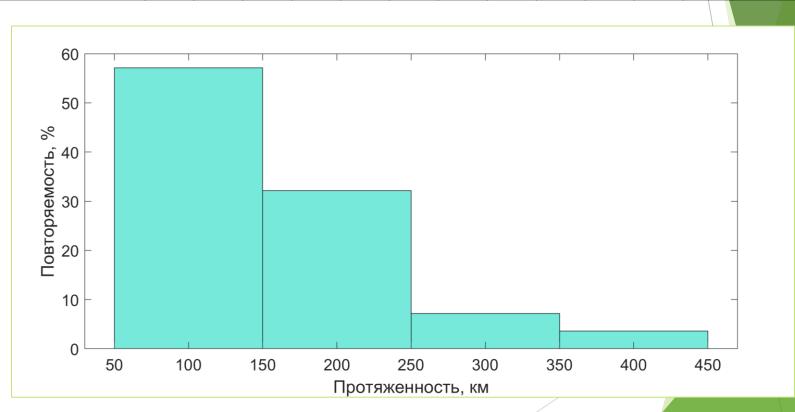
Случаи прохождения МКС совместно с пролётами CALIPSO

Nº	Год	Месяц	День	Широта центра МКС	Долгота центра МКС	Время пролёта спутника	
1	2010	8	13	55,6	78,4	7:44	
2	2010	8	25	56,1	71,4	8:09	
3	2010	8	25	57,0	70,9	8:09	
4	2011	6	2	55,5	73,7	8:01	
5	2012	6	11	55,3	72,4	8:08	
6	2012	6	13	55,7	74,0	7:55	
7	2012	6	17	53,5	82,2	7:30	
8	2012	8	27	51,1	82,3	7:36	
9	2013	6	14	54,2	73,2	8:08	
10	2013	7	15	51,7	85,2	7:24	
11	2013	7	19	58,3	86,8	7:01	
12	2013	7	20	51,8	80,0	7:43	
13	2013	8	5	52,2	79,6	7:42	
14	2013	8	25	51,3	85,8	7:18	
15	2014	6	16	50,5	85,6	7:23	
16	2014	7	27	53,8	86,2	7:18	
17	2016	6	12	49,6	85,5	7:29	
18	2016	6	14	58,8	84,9	7:20	
19	2017	6	9	54,5	72,7	8:08	
20	2017	6	22	55,8	79,6	7:37	
21	2017	6	29	57,5	78,4	7:44	
22	2018	6	20	54,9	84,6	7:19	
23	2018	6	27	52,3	85,0	7:24	
24	2018	6	29	56,8	85,1	7:14	
25	2018	7	1	59,6	86,3	7:02	
26	2019	6	9	55,8	82,9	7:27	
27	2019	6	12	55,2	76,6	7:43	
28	2019	8	16	52,7	79,8	7:47	

Пример тематических рисунков по данным MODIS, CALIPSO

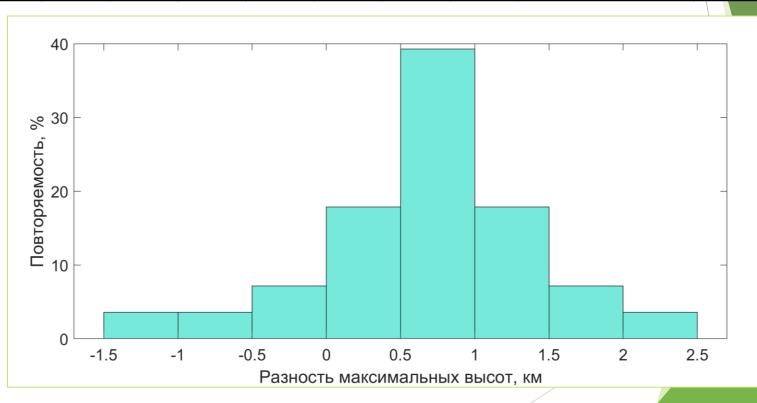
а – RGB-изображение МКС по данным MODIS (спутник Aqua) и траектория спутника CALIPSO;

b – маска слоёв облачности и аэрозоля;

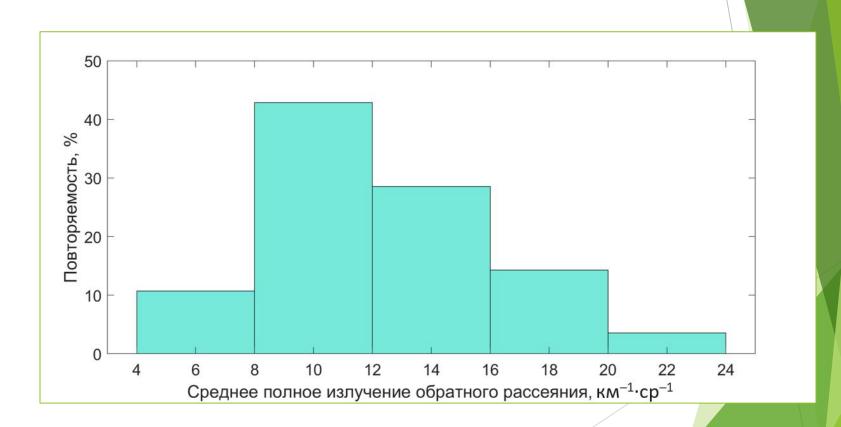

с – маска типов облачности;

d – профиль полного излучения обратного рассеяния;

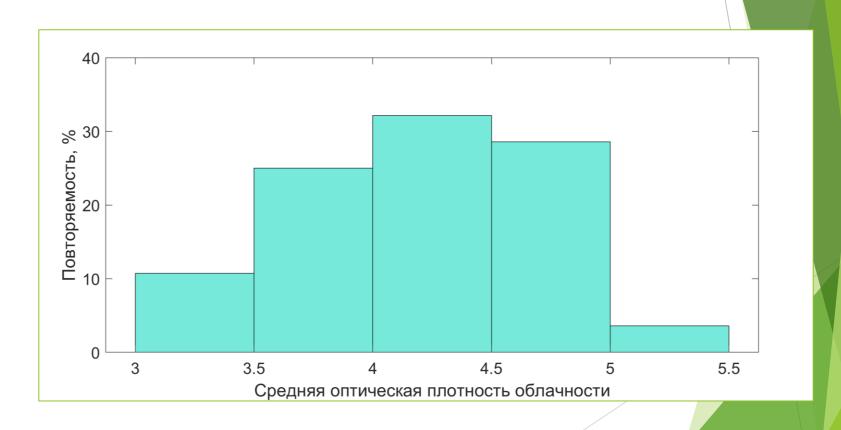
е – изменение оптической плотности по данным лидара CALIOP (спутник CALIPSO) за 11.06.2012 г.


Распределение значений горизонтальной протяжённости МКС

Nº	1	2	3										13		
Протяжённость (км)	297	135	108	405	135	189	108	81	189	108	108	81	108	162	Cp.
Nº	15	16	17	18	19	20	21	22	23	24	25	26	27		4
Протяжённость (км)	108	108	162	81	189	189	162	108	216	81	243	108	297	81	155


Статистические характеристики высоты ВГО МКС

	та ВГО ым ли <i>р</i>		•		га троп анным МЕІ	•	•	Отношение средних значений высот	Δ _{cp.} ,	Δ _{P95} ,
Ср.	Мед.	P5	P95	Cp.	Мед.	P5	P95	значении высот		
10,5	10,6	9,4	11,1	10,3	10,3	10,1	10,5	1,02	0,20	0,66


Статистические характеристики полного излучения обратного рассеяния на длине волны 532 нм МКС

Cp.	Мед.	СКО	ИКР	Макс.	Мин.	P5	P25	P75	P95
12,7	3,90	19,5	14,6	99,2	0,10	0,10	0,28	14,9	58,4

Статистические характеристики оптической плотности облачности МКС

Cp.	Мед.	СКО	ИКР	Макс.	Мин.	P5	P25	P75	P95
4,23	4,35	1,44	1,30	7,50	1,22	1,61	3,62	4,92	6,43

Основные результаты

В целом по всем случаям были получены следующие оценки характеристик мезомасштабных конвективных систем над югом Западной Сибири по данным спутника CALISPO:

- горизонтальная протяжённость: среднее значение **155 км**, минимальное 81 км, максимальное 405 км, диапазон типичных значений (от 25- до 75-процентиля) 110÷190 км;
- высота верхней границы: среднее **10,5 км**, минимальное 9,5, максимальное 11,1 км, диапазон типичных значений **10,2÷10,8** км;
- полное излучение обратного рассеяния (на длине волны 532 нм): среднее $-12,7\cdot10^{-3}$ км $^{-1}\cdot$ ср $^{-1}$, минимальное $-0,1\cdot10^{-3}$ км $^{-1}\cdot$ ср $^{-1}$, максимальное $-99,2\cdot10^{-3}$ км $^{-1}\cdot$ ср $^{-1}$, диапазон типичных значений $-0,3\div14,9\cdot10^{-3}$ км $^{-1}\cdot$ ср $^{-1}$;
- оптическая плотность: среднее 4,2, минимальное 1,6, максимальное 6,4, диапазон типичных значений 3,6÷4,9.
- В 2/3 рассмотренных случаев МКС средняя высота их верхней границы превышала высоту тропопаузы (по данным реанализа MERRA), то есть наблюдалось «выгибание» МКС тропопаузы с возможным пробитием. Среднее значение разности высот составляет 0,2 км, а максимальное более 2 км.

СПАСИБО ЗА ВНИМАНИЕ!