Динамика отрицательного ионосферного возмущения над Северной и Северо-Восточной Азией во время магнитной бури 14-17 июля 2012 г.

Полех Н.М., Золотухина Н.А., Куркин В.И.

Институт солнечно-земной физики СО РАН, Иркутск, Россия

Рис.1. Сверху вниз показаны вариации Vsw, Вz и Ву компонент ММП, индексов AE, Кр и Dst. Числа под верхним графиком соответствуют значениям потока солнечного радиоизлучения F10.7.

Гелиосферные источники и характеристики магнитной бури

Сильная геомагнитная буря 14–18 июля 2012 г. (экстремальные значения Dst = -139 нТл, Кр = 7- и AE~ 1700 нТл) началась через ~ 50 часов после вспышки балла X1.4, наблюдавшейся с 15:37 до 16:49 UT 12 июля вблизи центрального меридиана Солнца и сопровождавшейся выбросом корональной массы.

Главная фаза бури развивалась в 00-18 UT 15 июля под воздействием оболочки коронального выброса, движущейся со скоростью Vsw ~550-650 км/с, и лидирующей части магнитного облака, в котором в течение ~33 ч наблюдалась направленная к югу вертикальная (Bz) составляющая межпланетного магнитного поля (ММП), усиленная до = -10÷ -17 нТл.

Ранняя фаза восстановления наблюдалась в 19:00–02:00 UT 15–16 июля во время постепенного уменьшения абсолютных значений вертикальной и азимутальной (By) компонент ММП и скорости солнечного ветра.

В последующие дни наблюдалось медленное немонотонное восстановление индексов геомагнитной активности до предбуревых значений.

Анализ ионосферных данных

Таблица 1. Список станций и их координаты

Название	Геграфические		Геомагнитные	
станции	Широта, N	Долгота, Е	Широта, N	Долгота, Е
Норильск	69.2	88.0	58.6	165.7
Жиганск	66.8	123.4	61.58	193.64
Тунгуска	61.6	90.0	50.9	165.6
Якутск	62.0	129.9	51.2	194.8
Томск	56.5	84.9	46.01	160.8
Иркутск	52.4	104.0	41.2	175,5
Manzhouli	49.6	117.6	38.4	186.5
Хабаровск	48.5	135.1	38.1	201.3
Beijing	40.0	116.3	28.8	174.1
I-Cheon	37.14	127.54	32.5	199.4
Jeju	33.43	126.3	29.02	198.4

Пространственно-временная динамика ионосферных возмущений исследовалась по данным вертикального зондирования, полученным на станциях, расположенных в Сибири и на Дальнем Востоке, а также по данным китайских и корейских станций. Список станций, их географические и геомагнитные координаты приведены в таблице 1. Выявленные изменения ионосферных параметров были сопоставлены с вариациями полного электронного содержания над этими станциями, определенными по картам GPS TEC [1]. Исходя из расположения станций, все ионосферные данные были разделены на 2 группы, относящиеся к меридианам 85-110°, 120-135°E. Изменения критических частот (foF2, черные линии) во время магнитной бури оценивались относительно фонового уровня, в качестве которого использовались значения foF2, усредненные за двое предыдущих суток (синие линии).

В Норильске после SSC сразу наблюдались экранирующие спорадические слои (звездочки), затем до 00:15 UT 15 июля полное поглощение, сменившееся отрицательным ионосферным возмущением в вечерние часы. На станциях Жиганск, Якутск, Тунгуска отрицательное возмущение началось соответственно через 1, 13 и 15 часов после SSC в результате последовательного захода станций в главный ионосферный провал (ГИП). Смещение ГИП до широты ~ 48° N вызвало отрицательное возмущение foF2, начавшееся в вечернем секторе около 15 июля после 12 UT. Расчеты положения дня ГИП выполнены по модели [2].

Карты распределения критических частот (слева) и полного электронного содержания (справа) для долготного сектора 120-135 ° Е

На картах foF2 и TEC, видно, что 15, 16 и 17 июля отрицательное ионосферное возмущение распространялось с севера на юг после 12:00 UT. Наиболее сильно широта возмущения понизилась в 12:00-21:00 UT 15 июля. Судя по показанным на предыдущем рисунке расчетам, 15 июля ее уменьшение на широтах, больших чем ~ 50° N, может быть связано со смещением ГИП, 16 и 17 июля – с медленным восстановлением электронной концентрации в зоне ГИП после продолжительного интервала усиленной магнитосферной конвекции. На более низких широтах понижения foF2 и ПЭС 15-17 июля было вызвано изменением состава термосферы, что подтверждается данными GUVI [3].

Показанные на рисунке нормированные отклонения максимальной электронной концентрации в процентах (определена как Ne=1.24·10⁴·foF2²) от фоновых значений, характеризующие глубину отрицательного ионосферного возмущения, имеют тенденции увеличения в вечерние часы и при переходе от субавроральных к средним широтам. Это указывает на значительный вклад экваториального смещения ГИП в формирование среднеширотного отрицательного ионосферного возмущения.

Выводы

- 1. Отрицательное ионосферное возмущение наблюдалось на широтах 48–70° N более 3 суток; на широтах 30–45° N в течение 1–2 суток.
- 2. Наиболее сильное снижение NmF2 над станциями составило 65–80% от предбуревых значений. Оно увеличивалось от высоких к низким широтам.
- 3. Смещение главного ионосферного провала до геомагнитной широты ~ 45° внесло значительный вклад в развитие отрицательного ионосферного возмущения на средних широтах.

Работа выполнена при финансовой поддержке Минобрнауки (субсидия №075-ГЗ/Ц3569/278). Экспериментальные данные получены с использованием оборудования Центра коллективного пользования «Ангара» http://ckp-rf.ru/ckp/3056/.

Литература

1. https://cdaweb. gsfc.nasa.gov/cgi-bin/eval1.cgi

2. Жеребцов Г.А., Пирог О.М., Разуваев О.И. Структура и динамика высокоширотной ионосферы // Исследования по геомагнетизму, аэрономии и физике Солнца. Вып. 76. С. 165-177. **1986**.

3. http://guvitimed.jhuapl.edu/guvi-galleryl3on2