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It is known that, in contrast to the background, in the decay processes of a number of 

long-lived radionuclides that constantly occur in nature, distinct temperature anomalies are 

created in separate parts of the earth's surface. These effects are characteristic, in particular, 

for significant areas contaminated with oil or ore processing wastes generated in the processes 

of their extraction and processing in significant areas of the majority of ore deposits. 

Furthermore, there are temperature anomalies caused by the transfer of energy, or the 

transportation of energy and, including those associated with certain types of malfunctions in 

the implementation of a number of types of technogenic activities. Thus, this effect is inherent 

both in the areas of production and primary processing of radioactive substances and in 

territories characterized by an increased level of contamination with heavy oil components, in 

the composition of which there is a constant (over time) accumulation of long-lived 

radionuclides.  

Various optical-electronic scanning devices (Landsat 7,8 – ETM+; OLI; NOAA 18,19; 

Terra, Aqua –MODIS; Terra –ASTER and etc.) are used to observe temporal and spatial 

changes in the natural thermal radiation of the earth's surface. The interpretation of the 

relevant data is carried out by modern processing programs. However, the possibility of 

individual programs is limited only by a number of physical processes and factors affecting 

the final results. The programs used are based on fairly simple theoretical models built taking 

into account very severe restrictions and ideal meteorological and geological conditions. For 

the practical application of these methods in real conditions, further improvement of technical 

observations and theoretical analysis is required. In order for accuracy improvement of 

interpretation of thermal IR information on the basis of the corresponding physical properties 

and processes, a mathematical model of the surface thermal transfer process associated with 

topography has been proposed.Temperature is determined from the diffusion equation: 

                                                            𝛾
𝛿2𝑇

𝛿𝑥2 =
𝛿𝑇

𝛿𝑡
                                                         (2.1)               

wherein T=T(x,t) – the temperature at depth x from the surface; t - local time, measured 

from midday; γ - thermal diffusivity;  - thermal conductivity. 

The decision of the  (2.1) for periodic heating at a given frequency ω is. 

 

                                  𝑇(𝑥, 𝑡) = ∑ 𝐷𝑛 exp(−𝑘√𝑛𝑥) cos(𝑛𝑐𝑜𝑡 − 𝜀𝑛 − 𝑅√𝑛𝑥)∞
𝑛=0        (2.2)      

wherein Dn and εn - arbitrary coefficients. 

𝑅 = √
𝜔

2𝛾
 - wave number first harmonic. 

Arbitrary coefficients Dn, εn are estimated under boundary conditions on the surface, 

expressed through the energy balance between the incident radiation of the Sun and the outgoing 

radiation of the Earth, taking into account the thermal conductivity of the corresponding 

environments. At the same time, the algorithms (MSD 14L; C6MODIS; C5MODIS) do not take 

into account atmospheric convection, thermal effects associated with the evaporation of water 

and the condensation of water vapor.  

So, at x = 0                 −𝐾𝑠𝑝𝑒𝑐
𝛿𝑇(0,𝑡)

𝛿𝑥
= −𝜀𝛿𝑇4 + 𝐼                                                   (2.3) 

Wherein I – absorbing incident radiation, composed of shortwave solar radiation (λ < 4 

mkm) and longwave atmospheric radiation (λ ˃ 4 mkm), ε – average surface emissivity, δ - 

Stefan–Boltzmann constant, Kspec – thermal conductivity. 

According to (2.3), the surface temperature is directly related to the radiative 

characteristics of the surface. It is known that the spectral distribution of thermal radiation of an 

absolutely black body is described by Planck’s law: 
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𝑐1

𝜆5
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𝑒
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                                                                   (2.4) 

Wherein 𝑊𝜆 – radiation spectral density 𝑣𝑎𝑡𝑡 ∙ 𝑐−2 ∙ 𝑚𝑘𝑚−1; 𝜆 – the wavelength, mcm; 

T – black body temperature; C1 and C2 – optical coefficients.  

The radiation density of real objects is always less than the density of radiation of an 

absolutely black body at the same temperature. The attitude of these values is called the 

emissivity of a real object and is determined by 

𝜀 =  
1

𝜎𝑇4 ∫ 𝜀(𝜆)𝑊𝜆𝑑𝜆
∞

0
                                                               (2.5) 

This parameter depends on the direction of measurement. The radiation 𝑊𝜆  incident on 

the onboard sensor is approximated using the equation 

𝑊𝜆 =  𝑊𝜆 𝑎𝑡𝑚(1 − 𝜏) +  𝜀𝑊𝜆 𝑒𝑎𝑟𝑡ℎ𝜏                                              (2.6) 

Wherein 𝑊𝜆 𝑎𝑡𝑚 – radiation of the middle layer of the atmosphere; τ - atmospheric 

transmittance; ε – ground emissivity; 𝑊𝜆 𝑒𝑎𝑟𝑡ℎ – radiation leaving the earth's surface. 

In order to improve the accuracy of the thermal model of the Earth’s surface, the 

radiation of a clear sky should be taken into account, the radiation of the clouds and the scanner 

onboard the satellite reacts to radiation over a portion of certain wavelengths and the filter 

functions.Using the Laplace transform, Yacger derived the dependencies between the surface 

radiation and its temperature and solved the resulting equation for the surface temperature using 

the iterative method 

𝑓𝑛 =
𝑃

√𝜋𝑅
∑ 𝑇𝑠𝜙𝑛−𝑠+1

𝑚
𝑠=1         n=1, 2, ..., m                                     (2.7) 

Wherein 𝑓𝑛 – average radiation flux incident on the earth's surface in the n spectral 

interval; 𝑃 =
𝐾𝑠𝑝𝑒𝑐

√𝑅
 – Earth's thermal inertia; τ - heating flow period; 𝑇𝑠 - average surface 

temperature in the S interval; 𝜙 - numerical coefficients determined only by the value of m - the 

total number of intervals for τ. The term 𝑓𝑛, equal to the right side of (2.3), contains the term 

with 𝑇𝑠
4 and therefore to find the Ts must use the iterative method.  

The non-linear thermal transfer problem can also be approached using the finite 

difference method. To ensure convergence, careful selection of spatial and temporal steps is 

necessary. When using the method of finite differences and Laplace transforms, the physical 

meaning is obscured, which can lead to excessive computer time. Therefore, it was decided to 

linearize a member of the equation describing the radiation flux under boundary conditions, and 

then check the numerical results using a more accurate solution with the Laplace transform. 

Within the diurnal changes in the temperature of the investigated earth's surface, the results were 

quite satisfactory.It is known that incident radiation I consist of shortwave solar radiation Is and 

longwave radiation of the sky. The latter can be approximated σTsky
4 , where Tsky

4  – effective 

radiation temperature of the sky, therefore, the absorbed flux is εσTsky
4 . Then the long-wave 

components in the first part of the (2.3) can be linearized as 

𝜀𝜎𝑇4 − 𝜀𝜎𝑇𝑠𝑘𝑦
4 ~4𝜀𝜎𝑇𝑠𝑘𝑦

3 (𝑇 − 𝑇𝑠𝑘𝑦) at  
𝑇−𝑇𝑠𝑘𝑦

𝑇𝑠𝑘𝑦
≪ 1                                     (2.8) 

The solution of the diffusion  (2.1), which satisfies the boundary condition (2.3), the 

modified expression (2.8), can be obtained by simple substitution. Let us assume that 

𝜙(𝑥, 𝑡) = 𝑇 −
1

ℎ

𝛿𝑇

𝛿𝑥
                                                         (2.9) 

where   ℎ =
4𝜀𝜎𝑇𝑠𝑘𝑦
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𝐾
  then 

 𝑘
𝛿2𝜙

𝛿𝑥2 =
𝛿𝜙

𝛿𝑡
                                                           (2.10) 

satisfies  the  boundary condition at  x=0 

 

𝜙 = 𝑇𝑠𝑘𝑦 +
𝐼𝑠

𝐾ℎ
                                                           (2.11) 

where 𝐼𝑠 - absorbed shortwave current. This term depends on the albedo of the earth's surface A, 

solar declination δ, geographic latitude λ, the slope of this surface and can be expressed as 



𝐼𝑠 = (1 − 𝐴)𝑆0𝐶𝑀(𝑍)𝑐𝑜𝑠𝑍 ′                                               (2.12) 

where 𝑆0 - solar constant, 𝐶 – coefficient taking into account the weakening of the solar flux 

cloud cover,  𝑀(𝑍) - atmospheric transmission due to zenith angle, 𝑍 ′ - local zenith angle for 

incline.Atmospheric attenuation is approximately determined by law √𝑠𝑒𝑐𝑧;  

Then 

𝑀(𝑍) = 1 − 0,2√𝑠𝑒𝑐𝑧                                                    (2.13) 

where secz = cosλcosδ + sinαsinδ 

The local zenith angle 𝑧 ′ can be calculated by the formula 

𝑐𝑜𝑠𝑧 ′ = 𝑐𝑜𝑠𝑑𝑐𝑜𝑠𝑧 − 𝑠𝑖𝑛𝑑(𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝛿𝑠𝑖𝑛𝜔𝑡 − 𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝛿𝑐𝑜𝑠𝜆 − 𝑠𝑖𝑛𝛿𝑠𝑖𝑛𝛼 cos 𝜔𝑡)     (2.14) 

where d - angle of inclination measured from the horizon down, φ azimuth of the clockwise 

angle from the north direction. For convenience, in order to reduce the error associated with a 

regional feature, an additional parameter H (t) should be defined, which expresses local 

insolation: 

𝐻 = {
𝑀(𝑧)𝑐𝑜𝑠𝑧 ′, −𝑡𝑅 < 𝑡 < 𝑡𝑠

0                       𝑡𝑠 < 𝑡 < 𝑡𝑅
                                                (2.15) 

where 𝑡𝑅 and 𝑡𝑠 – time of sunset and sunrise local time, provided that−𝑡𝑅 < 𝑡 < 𝑡𝑠, 𝑐𝑜𝑠𝑧 > 0 

and  𝑐𝑜𝑠𝑧′ > 0. Therefore  

                                                  𝐼𝑆 = (1 − 𝐴)𝐶𝐻𝑆0                                                            (2.16)    

and the boundary condition at x = 0 expressed by (2.8) takes the form 

𝜙 = 𝑇𝑠𝑘𝑦 + (1 − 𝐴)
𝑆0𝐶𝐻

𝐾ℎ
                                                       (2.17) 

The solution of equation (2.9) satisfying condition (2.17) is 

𝜙(𝑥, 𝑡) = 𝑇𝑠𝑘𝑦 +
(1 − 𝐴)𝑆0𝐶

𝐾ℎ
 

∑ 𝐴𝑛 exp(−𝑘√𝑛𝑥) cos (𝑛𝜔𝑡 − 𝜀𝑛 − 𝑘√𝑛𝑥∞
𝑛=0                                   (2.18) 

where 𝐴𝑛 and 𝜀𝑛 – amplitude and phase of the harmonic components of local insolation H. 

Surface temperature can be determined by integrating (2.2) 

𝑇(0, 𝑡) = ℎ ∫ 𝜙(ϧ, 𝑡) exp(−ℎϧ) 𝑑ϧ = 𝑇𝑠𝑘𝑦 +
(1−𝐴)𝑆0𝐶

𝐾

∞

0
∑

𝐴𝑛cos (𝑛𝜔𝑡−𝜀𝑛−𝛿𝑛)

√(ℎ+𝑘√𝑛)2+(𝑘√𝑛)2

∞
𝑛=0            (2.19) 

where 𝛿𝑛 = 𝑎𝑟𝑐𝑡𝑔(𝑘
√𝑛

𝑛
+ 𝑘√𝑛) 

The effect of the underground heat flux (Q) can be taken into account if we add the second 

solution  𝑇 =
𝑄𝑥

𝐾
+

𝑄

𝐾ℎ
, which satisfies the boundary condition(2.3),with a differential (2.1).  

Recall that 𝐾 = √
𝜔

2𝑘
;     ℎ =

4𝜀𝜎𝑇𝑠𝑘𝑦

𝐾
 

Input 𝑟 = 𝑃√
𝜋

𝜏
  

where   𝜏 =
2𝜋

𝜔
  and  s=hK. 

Then 𝑘√
ℎ

𝑛
= 𝑟√

𝑛

𝑠
  and √𝑘𝑛 + ℎ2 = ℎ√(𝑟√

𝑛

𝑠
)2 + 1, 

Therefore, 

𝑇(0, 𝑥) = 𝑇𝑠𝑘𝑦 +
𝑄

𝑠
+ (1 − 𝐴)𝑆0𝐶 · ∑ 𝐴𝑛

cos (𝑛𝜔𝑡−𝜀𝑛−𝛿𝑛)

𝑉(𝑠+𝑟√𝑛)2+(𝑟+√𝑛)2𝑛=0                            (2.20) 

𝛿𝑛 = 𝑎𝑟𝑐𝑡𝑔(𝑟√
𝑛

𝑠
+ 𝑟√𝑛) 

𝑟 = 𝐹√
𝜋

𝜏
 

𝑆 = 4𝜀𝜎𝑇𝑠𝑘𝑦
3  

Average daily temperature Tdc is calculated by integrating (2.19) over a daily cycle  



𝑇𝑑𝑐 =
1

𝜏
∫ 𝑇(0, 𝑡)𝑑𝑡 = 𝑇𝑠𝑘𝑦 +

𝑄

𝑆
+ (1 − 𝐴)𝑆0𝐶𝐴0 · 𝑐𝑜𝑠

𝜀0

𝑆

𝑇

0
                          (2.21) 

Where                     𝐴0𝑐𝑜𝑠𝜀0 =
1

𝜏
∫ 𝐻(𝑡)𝑑𝑡

𝜏

0
                                                 (2.22) 

It is important to note that the Tdc value does not depend on the thermal inertia of the 

earth’s surface, and together with the measured albedo values and topographic data, it can be 

used to estimate the subsurface heat flux Q. The difference between day and night temperatures 

ΔT is calculated based on the difference between midday and midnight temperatures 

𝛥𝑇 = 𝑇(0,0) − 𝑇 (0,
𝜏

2
).                                                     (2.23) 

The value ΔT that is a function of thermal inertia P can be determined by systematic 

observations and used to calculate changes in thermal inertia. 

 Conclusion.Satellite information obtained in the thermal IR spectrum is used in various 

geological and natural fields. Since the interpretation of such information is complicated by the 

influence of numerous factors, the developed model makes it possible to determine the optimal 

observation time for obtaining quantitative characteristics of various surface properties. It is 

established that the ratio of the difference between day and night temperatures to the albedo 

value depends only on the thermal inertia, and therefore it can be used to isolate geological 

objects. The dependence of thermal inertia on density, water content and to some extent on the 

composition and condition of vegetation cover suggests that the described method will be useful 

for detecting and accurately predicting the incidence of agricultural crops. 

 


