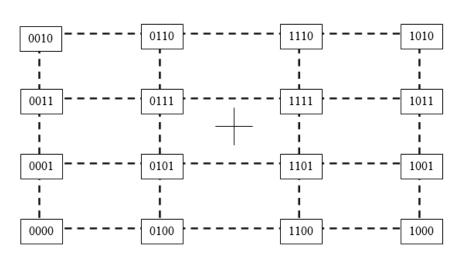
Влияние нестабильностей модуляторов цифровых сигналов на вероятностные характеристики при их приеме

Назаров Л.Е., Кулиев М.В.

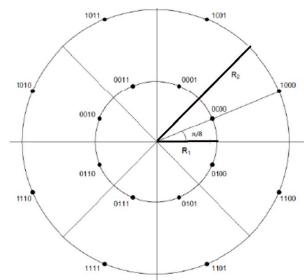
ФИРЭ им.В.А.Котельникова РАН

ВВЕДЕНИЕ


Искажающие факторы при распространении сигналов:

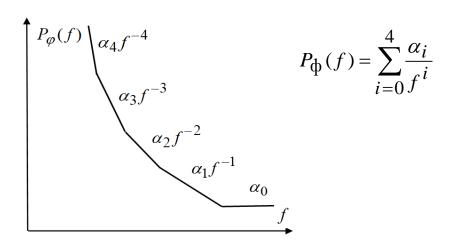
- наличие аддитивного шума (АБГШ);
- многолучевость;
- нестационарность линий передачи;
- снижение мощности сигналов за счет их пространственного распространения;
- нелинейность передающего устройства;
- влияние атмосферы (ионосфера замирания сигналов)
- погрешности синхронизации (фазовая, тактовая):
- фазовые шумы за счет кратковременной нестабильности генераторов в составе модуляторов цифровых сигналов

ПОСТАНОВКА ЗАДАЧИ


Параметр информационных систем – вероятностные характеристики P_{0} Параметр цифровых сигналов - частотная эффективность $k = \log_2 M$ бит/сек/Гц)

ЧАСТОТНО-ЭФФЕКТИВНЫЕ ЦИФРОВЫЕ СИГНАЛЫ

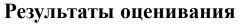
«Созвездие» КАМ-16 сигналов

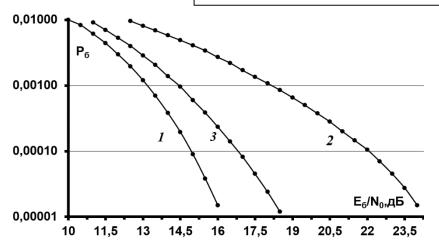

$$P_{0} = \frac{1 - (1 - P)^{2}}{\log_{2} M}$$
 $P = \frac{2(L - 1)}{L} Q \left(\sqrt{\frac{3}{L^{2} - 1} \frac{E_{cp}}{N_{0}}} \right)$ $L = 2^{k/2}$

«Созвездие» АФМ-16 сигналов

МОДЕЛЬ ФАЗОВЫХ ШУМОВ

Основная характеристика фазовых шумов - спектральная плотность мощности $P_{\Phi}(f)$

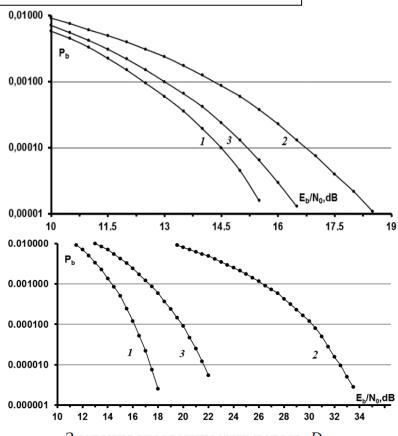



- α_0 белый шум
- α_1 фликкер-шум
- α_2 белая ЧМ
- α_3 фликкер-ЧМ
- lpha4случайная ЧМ

Энергетические потери при приеме цифровых сигналов при наличии АБГШ и фазовых шумов

$$D = 1 + \frac{E_{cp}}{N_0} \frac{\pi^2}{3} \sigma_{\phi}^2$$

Meyr M., Moeneclaey M. and Fechtel S.A. Digital communication Receivers. 1998.



Вероятностные характеристики для КАМ-16, АФМ-16, ФМ-16 сигналов: 1 - оптимальный прием;

$$2 - \sigma_{\phi}^2 = 0.01$$

$$3 - \sigma_{\phi}^2 = 0.0033$$

Значения энергетических потерь D

•	Тип·сигналов¤	$D\cdot$ дБ \P		<i>D</i> -дБ¶	
		$\sigma_{\Phi}^2=0.0033$ рад 2 . \square		$\sigma_{\Phi}^2 = 0.01$ ·paд ² ¤	
		Моделирование¤	Теория¤	Моделирование¤	Теория¤
-	ФМ-16¤	6.0¤	5.4¤	15.3¤	9.2¤
-	KAM-16¤	2.5¤	4.3¤	8.0¤	7.9¤
-	А ФМ-16¤	1.5¤	4.1¤	3.0¤	7.5¤

ВЫВОДЫ

- **1.** Сигналы с многопозиционной фазовой манипуляцией ФМ-16 наиболее подвержены искажающему влиянию фазового шума **потери достигают 15 дБ.**
- **2.** Сигналы АФМ-16 обеспечивают наибольшую помехоустойчивость при наличии фазовых шумов **потери не превышают 3 дБ.**
- **3.** Теоретические значения энергетических потерь для рассматриваемых сигналов представляют достаточно приближенные оценки по отношению к результатам моделирования.

СПАСИБО ЗА ВНИМАНИЕ!